Правило сравнения дробей с одинаковыми знаменателями: из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше, и меньше та дробь, числитель которой меньше.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно: 1. Привести дроби к общему знаменателю; 2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Уравнение первой степени - это уравнение прямой. значит есть две прямые, они не пересекутся в том случае, если они параллельны. Значит угол наклона к оси ОХ у них должен быть одинаковым. Тангенс угла наклона = (у-у0)/(х-х0). Определим угол наклона для заданных двух точек: Tgα=(0-(-6))/(3-0)=2. Теперь составим уравнение угла на уравнения с неизвестным а: пусть х=0, тогда у=4/3 (одна точка), вторая: пусть у=1, х=1/а, тогда Tgα=(4/3-1)/(0-1/а)=2 (два из значения для прямой чтобы они были параллельны). Решаем: (4/3-1)/(0-1/а)=2 1/3=-2/а а=-6
-24х=24-40-96
-24х=-112х=4 2/3