107. отправившись в гости к змею горынычу, баба-яга пролетела в ей ступе 276 км за 4 ч, а остальные 156 км за 6 часов в своих сапогах-скороходах. на сколько скорость движения ступы больше скорость движения сапог-скороходов?
Тоесть чтобы найти скорость нужно расстояние разделить на время. Чтобы найти время нужно расстояние разделить на скорость. Чтобы найти расстояние нужно скорость или время умножить на время или скорость. Если НА сколько то + или - , если ВО ИЛИ В то • или : . Понятно?
Решение: 1) область определения d(y) : x≠2 2) множество значений функции е (х) : 3) проверим является ли функция периодической: y(x)=x^4/(4-2x) y(-x)=(-x)^4/(4-2(-x))=x^4/(4+x), так как у (х) ≠y(-x); y(-x)≠-y(x), то функция не является ни четной ни нечетной. 4) найдем нули функции: у=0; x^4/(4-2x)=0; x^4=0; x=0 график пересекает оси координат в точке (0; 0) 5) найдем промежутки возрастания и убывания функции, а так же точки экстремума: y'(x)=(4x³(4-2x)+2x^4)/(4-2x)²=(16x³-6x^4)/(4-2x)²; y'=0 (16x³-6x^4)/(4-2x)²=0 16x³-6x^4=0 x³(16-6x)=0 x1=0 x2=8/3 так как на промежутках (-∞; 0) (8/3; ∞) y'(x)< 0, то на этих промежутках функция убывает так как на промежутках (0; 2) и (2; 8/3) y(x)> 0, то на этих промежутках функция возрастает. в точке х=0 функция имеет минимум у (0)=0 в точке х=8/3 функция имеет максимум у (8/3)=-1024/27≈-37.9 6) найдем точки перегиба и промежутки выпуклости: y'=((16-24x³)(4-2x)²+4(4-2x)(16x-6x^4))/(4-2x)^4=(24x^4-96x³+32x+64)/(4-2x)³; y"=0 (24x^4-96x³+32x+64)/(4-2x)³=0 уравнение не имеет корней. следовательно: так как на промежутке (-∞; 2) y"> 0, тона этом промежутке график функции направлен выпуклостью вниз. так как на промежутке (2; ☆) y"< 0, то на этом промежутке график функции напрвлен выпуклостью вверх. 7) найдем асимптоты : а) вертикальные, для этого найдем доносторонние пределы в точке разрыва: lim (при х-> 2-0) (x^4/(4-2x)=+∞ lim (при х-> 2+0) (x^4/(4-2x)=-∞ так как односторонние пределы бесконечны, то в этой точке функция имеет разрыв второго рода и прямая х=2 является вертикальной асимптотой. б) наклонные y=kx+b k=lim (при х-> ∞)(y(x)/x)= lim (при х-> ∞)(x^4/(x(4-2x))=∞ наклонных асимптот функция не имеет. 8) все, строй график
Решение. Обозначим скорость быстрого V1, а скорость медленного V2. t (время) с момента появления медленного на стадионе до финиша быстрого t. Из условия понятно , что к моменту появления медленного бегуна на стадионе, быстрому должно было остаться до финиша не меньше двух кругов. Следовательно V1*t>=2S_2`. А) За время t медленный должен отстать от быстрого не менее, чем на S2 и еще на S2-x V2*t<=V1*t-2S_2+x` учтём, что , V1*t=3S_2-x`.Следовательно V2*t<=3S_2-x-2S_2+x=S_2` Получается, что V1<2V2 следовательно V1*t<2S_2`, но это противоречит (А)
1) 276:4=69(км/ч) 2)156:6=26(км/ч)
3)69-26=43(км/ч)
ответ: на 43 км/ч.
Тоесть чтобы найти скорость нужно расстояние разделить на время. Чтобы найти время нужно расстояние разделить на скорость. Чтобы найти расстояние нужно скорость или время умножить на время или скорость. Если НА сколько то + или - , если ВО ИЛИ В то • или : . Понятно?