Пусть х лет -возраст бабушки, то у лет- возраст внучки. По условию: х-6=9(у-6) и х-4=7(у-4). Подставляем одно в другое: 9(у-6)+6-4=7(у-4). 9у-54+2=7у-28. 2у=24 у=12 лет внучке, то х=7(12-4)+4. Х=60 лет бабушке. ответ:60 лет и 12 лет
Первое и второе - однородные тригономтрические уравнения. Решаются делением на соs x в высшей степени. первое делим на соs²х, второе на cos³x. Получим квадратное уравнение относительно тангенса tg²x + 3 tg x - 4 = 0 корни -4 и 1. Решаем два простейших уравнения tg x=1 и tgх = -4 ответ пи делить на 4 плюс пи умножить на n, n - целое. и второй ответ - arctg 4 + пи на n.
Второе уравнение после деления на соs ³ х такое: tg³x - tg²x-3tgx+3=0 Группируем и раскладываем на множители: tg²x ( 1-tg x) + 3 ( 1-tg x)= 0 , (1-tgx) (tg²x+3)=0 второй множитель никогда не равняется нулю. остается 1-tgx=0/ tgx=1 ответ пи делить на 4 плюс пи умножить на n,
Первое и второе - однородные тригономтрические уравнения. Решаются делением на соs x в высшей степени. первое делим на соs²х, второе на cos³x. Получим квадратное уравнение относительно тангенса tg²x + 3 tg x - 4 = 0 корни -4 и 1. Решаем два простейших уравнения tg x=1 и tgх = -4 ответ пи делить на 4 плюс пи умножить на n, n - целое. и второй ответ - arctg 4 + пи на n.
Второе уравнение после деления на соs ³ х такое: tg³x - tg²x-3tgx+3=0 Группируем и раскладываем на множители: tg²x ( 1-tg x) + 3 ( 1-tg x)= 0 , (1-tgx) (tg²x+3)=0 второй множитель никогда не равняется нулю. остается 1-tgx=0/ tgx=1 ответ пи делить на 4 плюс пи умножить на n,