1. У каждой десятичной дроби можно выделить целую часть.
2. Целую часть от дробной части в
десятичной записи числа отделяют запятой.
3. В записи десятичной дроби после
запятой может быть бесконечное число знаков (например, число π "пи").
4. Если в конце десятичной дроби
приписать несколько нулей, то получим тоже самое число (2,34=2,340000).
5. Если в конце десятичной дроби
отбросить имеющиеся нули, то получим тоже самое число (54,7000=54,7).
6. Большая дробь на координатном луче расположена правее от меньшей.
7. Меньшая дробь на координатном луче расположена левее от большей.
8. Из обыкновенной дроби в десятичную легко перевести ту дробь, у которой в знакменателе числа 10, 100, 1000...
9. Чтобы сложить десятичные дроби,
нужно действовать также, как при сложении многозначных чисел, следя за запятой.
Например: 5.4+6.2. Сложим целые части: 5+6=11; дробные: 4+2=6. Получаем 11.6.
10. Из двух десятичных дробей больше та, которая находится правее на луче. Если говорить о положительных числах (например, 6.7 и 10.1), то больше та, что больше по модулю). Если говорим об отрицательных числах (напрмер, -6.2 и -8.9), то больше та, которая меньше по модулю. Ну, если сравнивать отрицательное и положительное число, то больше, конечно, всегда положительное число.
11. Из двух десятичных дробей с равными целыми частями больше та, у которой после запятой в разряде десятых число большее.
12. Из двух десятичных дробей с равными целыми частями и равными цифрами в разряде десятых больше та, у которой в разряде сотен число большее.
13. Чтобы узнать на сколько одно число
больше или меньше другого, нужно от большего числа отнять меньшее число.
Отрезок секущей СD равен √2 (ед).
Пошаговое объяснение:
Требуется найти отрезок секущей CD.
Дано: Окр.О ∩ Окр.К в точках А и В.
МСD - секущая;
МХ = 2 - касательная;
МС = CD.
Найти: CD.
1. Рассмотрим Окр.К
МХ - касательная;
МВА - секущая.
Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.То есть:
МХ² = МВ · МА
Подставим значения МХ = 2 :
4 = МВ · МА
2. Рассмотрим Окр.О.
МВА - секущая;
СDX - секущая.
Свойство двух секущих: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть.МА · МВ = MD · MC
MA · MB = 4 (п.1)
⇒ MD · MC = 4 (1)
3. МС = CD (по условию)
⇒ MD = 2CD
Заменим в выражении (1) MD на 2CD; MC на CD и получим равенство:
2CD · CD = 4
CD² = 2
CD = √2 (ед)
Отрезок секущей СD равен √2 (ед).
235 - 47
171 - 57
139 - нет, тк простое число
165 - 55
123 - 41
115 - 23
121 - 11