М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
serebrykov947
serebrykov947
14.06.2022 00:18 •  Математика

Решить: вычислить площадь фигуры, ограниченной линиями y=x^2-5x+6; y=0

👇
Ответ:
07спиннер07
07спиннер07
14.06.2022
x^2-5x+6=0
x_{1}=2; x_{2}=3
- \int\limits^3_2 {(x^2-5x+6)} \, dx 
=-( \frac{x^3}{3}- \frac{5x^2}{2}+6x)|^3_2
=- \frac{27}{3} + \frac{45}{2} -18+ \frac{8}{3} - \frac{20}{2} +12= \frac{1}{6}
4,5(17 оценок)
Ответ:
1337luntik2282
1337luntik2282
14.06.2022
Y=x²-5x+6;y=0
x²-5x+6=0
D=25-24=1
x=(5±1)/2
x1=2;x2=3
S=интеграл (2 до3)(х²-5х+6)dx=
x³/3-5x²/2+6x(23)=
27/3-45/2+18-(8/3-20/2+12)=
9-22,5+18-8/3+10-12=
25-22,5-8/3=2,5-8/3=5/2-8/3=
(15-16)/6=-1/6
|-1/6|=1/6
4,8(40 оценок)
Открыть все ответы
Ответ:
владa2368
владa2368
14.06.2022

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          x

           9

         

          . . .

             

   2019

Последней цифрой в произведении 9999·x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          y1

             9999

         

          . . .

             

   2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          z81

            9999

        79992

     

          . . .

             

   2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 

         . . .

       

   2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.

4,4(79 оценок)
Ответ:
anickava
anickava
14.06.2022

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          x

           9

         

          . . .

             

   2019

Последней цифрой в произведении 9999·x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          y1

             9999

         

          . . .

             

   2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          z81

            9999

        79992

     

          . . .

             

   2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 

         . . .

       

   2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.

4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ