Из города выехал автобус. Через 2 часа следом за ним выехал легковой автомобиль, скорость которого на 25 км час больше скорости автобуса. Автомобиль догнал автобус на расстоянии 300 км от города. Найдите скорость автобуса Решение: Пусть x км/ч – скорость автобуса, тогда скорость автомобиля x + 25 км/ч. Автобус был в пути 300/x часов, а автомобиль 300/(x+25). Зная, что автомобиль выехал позже на 2 часа, составляем уравнение: 300/x - 300/(x+25) = 2 300*(x+25)/(x(x+25)) - 300*x/(x(x+25)) = 2 300*(x+25) - 300*x = 2x(x+25) 300*x+ 7 500 - 300*x = 2x2+50x 2x2+50x - 7 500 = 0 D = 2500 – 4*2*(-7500) = 62 500 x1 = (-50 + √62 500)/(2*2) = (-50 + 250)/4 = 200/4 = 50 x2 = (-50 - √62 500)/(2*2) = (-50 - 250)/4 = -300/4 = -75 Второй корень уравнения не является решением, так как скорость должна быть положительной. Скорость автобуса составляет 50 км/ч. Проверка: 50 + 25 = 75 км/ч – скорость автомобиля 300 / 50 = 6 часов – время движения автобуса 300 / 75 = 4 часа – время движения автомобиля 6 – 4 = 2 часа ответ: Скорость автобуса составляет 50 км/ч.
АВСД - трапеция вписанная в окружность ⇒ АВСД - равнобедренная трапеция. Точка пересечения диагоналей АС и ВД - точка М . Центр описанной окружности ,точка О,лежит на середине АД. ∠ВМД=∠СМД=80° (как вертикальные углы) ∠АВД и ∠АСД опираются на диаметр АД ⇒ они прямые, то есть ∠АВД=∠АСД=90°. ∠АМД=∠АМС-∠СМД=180°-80°=100° АМ=ДМ ⇒ ΔАМД- равнобедренный ⇒ ∠МАД=∠МДА=(180°-100°):2=40° ΔАВМ: ∠ВАМ=180°-90°-80°=10° ⇒ ∠ВАД=∠ВАМ+∠МАД=10°+40°=50° ∠ВДА=∠ВАД=50° ∠АВС=∠СДА=180°-50°=130° (т.к. ∠АВС и ∠ВАД соответственные углы)
площадь основания
боковая поверхность
полная поверхность
см²