С древних времён людям приходилось не только считать предметы (для чего требовались натуральные числа), но и измерять длину, время, площадь, вести расчёты за купленные или проданные товары. Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Например, измеряя длину участка шагами, человек встречался с таким явлением: в длине укладывалось десять шагов, и оставался остаток меньше одного шага. Приходилось учитывать и части, доли меры. Так появились дроби. Появление дробей связано у многих народов с делением добычи на охоте. В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин.
С древних времён людям приходилось не только считать предметы (для чего требовались натуральные числа), но и измерять длину, время, площадь, вести расчёты за купленные или проданные товары. Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Например, измеряя длину участка шагами, человек встречался с таким явлением: в длине укладывалось десять шагов, и оставался остаток меньше одного шага. Приходилось учитывать и части, доли меры. Так появились дроби. Появление дробей связано у многих народов с делением добычи на охоте. В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин.
12 целых (3/4)=51/4
с=12 целых 3/11 > д=6,8 + 1 целая 3/5=6,8+1,6=8,4