Пошаговое объяснение: Док-во от противного: Пусть дана трапеция АВСД, где АВ-одна из боковых сторон, пусть МК-средняя линия трапеции, является диаметром, М-середина АВ, АМ=МА=х, М-точка касания окружности и боковой стороны, О-центр окружности, тогда ОМ =r. Рассмотрим ΔАОВ, он прямоугольный, т.к. ∠А+∠В=180°(сумма внутр односторон углов при параллельн основаниях, и центр окружностиО-точка пересечения биссектрис углов. ⇒∠ВАО+∠АВО=90° ⇒∠ВОА=90° Т.к. М-точка касания, то ОМ⊥АВ . Из ΔАОВ ⇒ВМ/ОМ == ОМ/АМ , т.е. х/r=r/x ⇒r²=x²⇒ r=x⇒ ΔАОМ прямоуг и равнобедренный ⇒∠МАО=∠МВО=45°⇒∠А=∠В=90°,что невозможно, значит средняя линия не может быть диаметром., чтд
Пошаговое объяснение: Док-во от противного: Пусть дана трапеция АВСД, где АВ-одна из боковых сторон, пусть МК-средняя линия трапеции, является диаметром, М-середина АВ, АМ=МА=х, М-точка касания окружности и боковой стороны, О-центр окружности, тогда ОМ =r. Рассмотрим ΔАОВ, он прямоугольный, т.к. ∠А+∠В=180°(сумма внутр односторон углов при параллельн основаниях, и центр окружностиО-точка пересечения биссектрис углов. ⇒∠ВАО+∠АВО=90° ⇒∠ВОА=90° Т.к. М-точка касания, то ОМ⊥АВ . Из ΔАОВ ⇒ВМ/ОМ == ОМ/АМ , т.е. х/r=r/x ⇒r²=x²⇒ r=x⇒ ΔАОМ прямоуг и равнобедренный ⇒∠МАО=∠МВО=45°⇒∠А=∠В=90°,что невозможно, значит средняя линия не может быть диаметром., чтд
Числа делятся на 18, если они делятся на 2 и на 9.
Число делится на 2, если оно чётное.
Число делится на 9, если сумма цифр этого числа кратна 9 (делится на 9 нацело)
11111 - не подходит, т. к. нечётное.
1353 - не подходит, т. к. нечётное.
6259 - не подходит, т. к. нечётное.
78908 - чётное и 7 + 8 + 9 + 0 + 8 = 32 не кратно девяти => не подходит.
47278 - чётное и 4 + 7 + 2 + 7 + 8 = 28 не кратно девяти => не подходит
236873 - не подходит, т. к. нечётное.
3956115 - не подходит, т. к. нечётное.
89890 - чётное и 8 + 9 + 8 + 9 + 0 = 34 не кратно девяти => не подходит
3538149 - не подходит, т. к. нечётное.