7/Задание № 2:
Если от задуманного трёхзначного числа отнять 8, то получившееся число разделится на 8. Если от задуманного числа отнять 9, то результат разделится на 9. А если к числу прибавить 13, то результат разделится на 13. Какое число было задумано?
РЕШЕНИЕ: Пусть х задумано. Тогда:
х-8=8а, значит х=8a+8=8(a+1) - задуманное число делится на 8
х-9=9b, значит х=9b+9=9(b+1) - задуманное число делится на 9
x+13=13c, значит х=13c-13=13(c-1) - задуманное число делится на 13
Учитывая, что 8, 9 и 13 - попарно взаимно просты, то задуманное число делится на НОК(8, 9, 13)=8*9*13=936. Понятно, что трёхзначное число, кратное 936 одно - само это число.
ОТВЕТ: 936
7/Задание № 5:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько зелёных яблок в первой корзине?
РЕШЕНИЕ: Пусть в первой корзине а яблок. Это число а должно делиться на 9, так как 7/9 первой корзины составляют зелёные яблоки, а это натуральное число. Пусть во второй корзине b яблок, тогда по той же причине b должно быть кратно 17, так как 9/17 второй корзины - красные яблоки.
Тогда уравнение 9p+17q=79 даст такие натуральные p и q, что p - (1/9) часть яблок в первой корзине, q - (1/17) часть яблок во второй корзине.
9p+17q=79
17q=79-9p
p=1: 79-9=70, 70 не делится на 17
p=2: 79-18=61, 61 не делится на 17
p=3: 79-27=52, 52 не делится на 17
p=4: 79-36=43, 43 не делится на 17
p=5: 79-45=34, q=34/17=2
p=6: 79-54=25, 25 не делится на 17
p=7: 79-63=16, 16 не делится на 17 и результат менее наименьшего натурального числа 1, поэтому проверку можно завершить.
Значит, p=5 - (1/9) часть яблок в первой корзине, зеленых же яблок 7/9 от общего числа, то есть в 7 раз больше, чем величина р: 5*7=35.
ОТВЕТ: 35 яблок
7/Задание № 6:
Периметр равнобедренного треугольника 28 см. Одна из его сторон втрое больше другой. Найдите основание равнобедренного треугольника. Дайте ответ в сантиметрах.
РЕШЕНИЕ: Пусть основание равно х см, а боковая сторона 3х см. Тогда периметр равен:
х+3х+3х=28
7х=28
х=4 (см)
Основание быть в три раза длиннее боковой стороны не может вследствие неравенства треугольника (сторон 3х, х и х не бывает, 3х>х+х).
ОТВЕТ: 4 см
В одной сказочной стране Математике жили целые и дробные числа. Жили они очень дружно и весело, друг другу
Однажды к ним в страну пришли в гости разделительные знаки. И стали они у чисел спрашивать, кто из них самый главный и кто самый нужный, без кого в стране не могут обойтись. "Мы здесь живем все наравне"-отвечали числа.
Но после того как ушли разделительные знаки, целые числа стали задумываться, а для чего нужны дробные числа. Ведь почти все математические вычисления происходят с целых чисел. Значит они самые главные и без них нельзя. Сильно загордились целые числа от своих мыслей и с дробными числами перестали дружить.
Проходит некоторое время в страну Математику пришли новые жители цифры и заданием целых чисел было измерить их. Теперь для измерения длины можно пользоваться только целыми метрами, однако не все цифры имеют точный рост. И тут целые числа поняли, что без дробных чисел у них ни как не получиться измерить рост новых жителей.
Тогда целые числа пошли к дробным и попросили их о они признались, что были не правы.И что в Математике все наравне важны и нужны. И стали с тех пор целые и дробные числа снова друзьями.