Удениса было 800р.сначала он потратил 7%этих денег на покупку пирожного, а затем - 40% оставшихся денег на покупку настольной игры. сколько рублей осталось у дениса после совершения покупок? это я надеюсь что справимся. за ранее огромное .
Пусть в последний час было налито v м^3 воды. Пусть в каждый час объем наливаемой воды в час уменьшался в q раз. Тогда воды было налито vq^4, vq^3, vq^2, vq и v в каждый их пяти часов. Известно, что vq^4+vq^3+vq^2+vq = 2*(vq^3+vq^2+vq+v). Отсюда vq(q^3+q^2+q+1)=2v(q^3+q^2+q+1). v(q-2)(q^3+q^2+q+1)=0 v(q-2)(q+1)(q^2+1)=0. Единственным решением тут будет q=2, удовлетворяющим смыслу задачи. Согласно второму условию, vq^4+vq^3=48. v=48/(q^4+q^3)=48/(2^4+2^3)=2. Теперь найдем объем воды во всей цистерне: V = vq^4+vq^3+vq^2+vq+v=v*(q^4+q^3+q^2+q+1)=v(q^5-1)/(q-1)=2*(2^5-1)/(2-1) м^3 = 62 м^3.
Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может. будем уменьшать число победных игр и считать, сколько за это команда получит очков. предположим, что победных игр 24: 24 · 3 = 72. таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи. предположим, что победных игр 23: 23 · 3 = 69. получаем, что 6 очков за ничью и 0 очков за поражение. предположим, что победных игр 22: 22 · 3 = 66. получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков. таким образом, наибольшее число ничейных матчей — 6.ответ: 6.
1) 800÷100=8(руб) - 1 %
2)40+7=47%
3)8×47=376(руб) - потратил
4)800 - 376 = 424(руб) осталось
ответ: 424 руб