до вылупления 12, после 16
Пошаговое объяснение:
примем белых цыплят за х, серых за 2х. х+4=2х, а значит х=4
Бо́гдан Тео́дор Я́ньский (польск. Bogdan Teodor Jański, 26.03.1807 г., около Груеца, Польша — 2.07.1840 г., Рим, Италия) — польский католический деятель, основатель монашеской Конгрегации Воскресения Господня, слуга Божий.
В 1822 году Богдан Яньский закончил школу в Пултуске, которой руководили монахи из монашеского ордена бенедиктинцев. Оставшись в этой школе для работы, он преподавал в ней математику и иностранные языки. В 1825 году Богдан Яньский поступил в Варшавский университет, в котором изучал право, философию и экономику. В 1828 году он выиграл конкурс на должность профессора в варшавском Политехническом институт. В этом же году он получил правительственную стипендию для научного путешествия по Европе.
В 1828 году остановился в Париже, где вступил в антикатолическую организацию сенсимонистов. Во время ноябрьского восстания получил от Национального Совета (польск.)русск. задание быть тайным корреспондентом в западной периодической печати. После подавления ноябрьского восстания решил остаться во Франции. Здесь он познакомился с Адамом Мицкевичем.
В 1832 году он порвал с обществом сенсимонистов в вернулся в Католическую церковь. В декабре 1834 года Богдан Яньский вместе с Адамом Мицкевичем основал "Товарищество объединённых братьев", которое просуществовало около шести месяцев. В июне 1835 года он основал "Национальную службу", целью которой стала пропаганда христианских принципов жизни среди польских эмигрантов, которая также просуществовала недолгое время. 17 февраля 1836 года Богдан Яньский основал так называемый Дом Яньского. В 1837 году он послал двух своих последователей Петра Семененко и Иеронима Кайсевича в Рим, чтобы там основать подобный дом и дать своим последователям теологическое образование.
24 января 1840 года, несмотря на плохое здоровье, Богдан Яньский отправился в Рим, где он вскоре умер 2 июля 1840 года. Был похоронен на кладбище святого Лаврентия (сегодня — кладбище Кампо Верано). 23 января 1956 года останки Богдана Яньского были перенесены в церковь святого Лаврентия за стенами в Риме.
Пусть х – количество птенцов белой куропатки, а у – это количество птенцов серой куропатки.
Так как, птенцов серой куропатки в 2 раза больше, то тогда получим: у = 2 * х;
Запишем общее количество птенцов: x + y = x + 2 * x;
Так как, нужно найти общее количество птенцов у двух серых и двух белых куропаток, то получим выражение в виде 2 * (x + 2 * x).
Так как, известны возможные ответы, то получим уравнения в виде:
2 * (x + 2 * x) = 5;
2 * (x + 2 * x) = 8;
2 * (x + 2 * x) = 6;
2 * (x + 2 * x) = 7.
Решим уравнения
А) 2 * (x + 2 * x) = 5;
Раскрываем скобки. Для этого значение перед скобками, умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. Тогда получаем:
2 * x + 2 * 2 * x = 5;
2 * x + 4 * x = 5;
Вынесем за скобки общий множитель и тогда получим:
X * (2 + 4) = 5;
X * 6 = 5;
X = 5/6;
Не удовлетворяет подходящему варианту решения, так как птенцов не может быть 5/6, это не целое число.
Б) 2 * (x + 2 * x) = 8;
2 * x + 4 * x = 8;
X * (2 + 4) = 8;
6 * x = 8;
X = 8/6;
Числитель и знаменатель в дроби в правой части выражения сокращаем на 2, тогда получим:
X = 4/3;
Не удовлетворяет подходящему варианту решения, так как птенцов не может быть 4/3, это не целое число.
В) 2 * (x + 2 * x) = 6;
2 * 3 * x = 6;
6 * x = 6;
X = 6/6;
Числитель и знаменатель в дроби в правой части выражения сокращаем на 6, тогда получим:
X = 1;
Удовлетворяет подходящему варианту решения.
Г) 2 * (x + 2 * x) = 7;
2 * 3 * x = 7;
6 * x = 7;
X = 7/6;
Не удовлетворяет подходящему варианту решения, так как птенцов не может быть 7/6, это не целое число.
Найдем общее количество птенцов у двух белых куропаток и двух серых куропаток
Отсюда получаем, что х = 1, тогда y = 2 * x = 2 * 1 = 2. Значит, у белой куропатки может быть 1 птенец, а серой куропатки 2 птенца.
2 * (x + y) = 2 * (x + 2 * x) = 2 * 3 * x = 6 * x = 6 * 1 = 6.
Значит, общее количество птенцов у двух белых куропаток и двух серых куропаток равно 6.
Пошаговое объяснение: