Дана правильная шестиугольная пирамида с плоским углом при вершине пирамиды 45 градусов и стороной основания а = 2.
Пусть боковое ребро рано L.
По теореме косинусов:
2 = √(L² + L² - 2*L*L*cos45°) = √(2L² - L²√2) = x(√(2 -√2)).
Отсюда боковое ребро равно: L = 2/(√(2 - √2)).
Проведём осевое сечение через боковые рёбра.
В сечении - равнобедренный треугольник, высота Н его равна высоте пирамиды. Основание равно 2 стороны а.
H = √(L² - a²) = √((4/(2 - √2)) - 4) = 2√(√2 - 1)/(√(2 - √2).
Площадь основания So = 3a²√3/2 = 6√3.
Объём V пирамиды равен:
V = (1/3)SoH = (1/3)*6√3*(2√(√2 - 1)/(√(2 - √2)) = 4√3*(√(√2 - 1)/(√(2 - √2)).
Если выполнить действия полученной формулы, то получим:
V ≈ 5,82590126 .
Пошаговое объяснение:
293+5*(3*x+51)=713
293+15х+255=713
15х=713-255-293
15х=165
х=165:15
х=11
161+4*(123+8*x )=1101
161+492+32х=1101
32х=1101-161-492
32х=448
х=448:32
х=14
484-4*(9*x-6)=4
484-36х+24=4
-36х=4-24-484
-36х=-504
х=-504:(-36)
х=14