Обозначим первое число через t, а второе число через c. В формулировке условия к данному заданию сообщается, что утроенная разность двух данных чисел на 5 больше их суммы, следовательно, имеет место следующее соотношение: 3 * (t - c) = t + c + 5. Также в условии задачи сказано, что удвоенная разность двух данных чисел на 13 больше их суммы 2 * (t - c) = t + c + 13. Решаем полученную систему из двух уравнений. Упрощая первое уравнение, получаем: 3t - 3c = t + c + 5; 3t - t = 3c + c + 5; 2t = 4c + 5; t = 2c + 2.5. Подставляя найденное значение t = 2c + 2.5 во второе уравнение системы, получаем: 2 * (2c + 2.5 - c) = 2c + 2.5 + c + 13; 2 * (c + 2.5) = 3c + 15.5; 2с + 5 = 3c + 15.5; 2с - 3с = 15.5 - 5; с = -10.5. Находим t: t = 2c + 2.5 = 2 * (-10.5) + 2.5 = -21 + 2.5 = -18.5. ответ: -18.5 и -10.5.
2. x^2-2xy-y^2=7
x-3y=5
x^2-2xy-y^2=7
x=5+3y
(5+3y)^2-2y(5+3y)-y^2=7
25+30y+9y^2-10y-6y^2-y^2=7
2y^2+20y+18=0 |:2
y^2+10y+9=0
D=100-26=64
y1=-10+8/2=-1
y2=-10-8/2=-9
при y=-1
x-3*(-1)=5
x=2
при y=-9
x-3*(-9)=5
x=-22
ответ: (2;1) (-22;-9)
1) (x+3)(y-2)=0
3x-2y=9
(x+3)(y-2)=0
x=9+2y/3
(9+2y/3+3)(y-2)=0 |*3
(9+2y+9)(3y-6)=0
(18+2y)(3y-6)=0
54y+108+6y^2-12y=0
6y^2+42y-108=0 |:6
y^2+7y-18=0
D=49+72=121
y1=-7+11/2=2
y2=-7-11/2=-9
при y=-9
3x-2*(-9)=9
3x+18=9
3x=-9 |:3
x=-3
при y=2
3x-2*2=9
3x-4=9
3x=13
x=4*(1/3)
ОТВЕТ: (-3;-9); (4*(1/3);2)