х∈ (-∞, -2].
Объяснение:
Решить систему неравенств:
-х²+х+6<=0
5-3(x+1)>x
Решим первое неравенство как квадратное уравнение:
-х²+х+6=0/-1
х²-х-6=0
х₁,₂=(1±√1+24)/2
х₁,₂=(1±√25)/2
х₁,₂=(1±5)/2
х₁= -4/2
х₁= -2
х₂=6/2
х₂=3
Смотрим на уравнение. Уравнение параболы.
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -2 и х=3. По графику ясно видно, что у<=0 (как в неравенстве) слева и справа от значений х, то есть, решения неравенства в интервале х∈ (-∞, -2]∪[3, +∞).
Значения х= -2 и х=3 входят в число решений неравенства, скобка квадратная.
Это решение первого неравенства.
Решим второе неравенство.
5-3(x+1)>x
5-3х-3>x
-3x-x> -2
-4x> -2
x< -2/-4 знак меняется
x<0,5
х∈ (-∞, 0,5) - решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь на числовой оси нужно отметить оба интервала и найти пересечение решений, которое подходит двум неравенствам.
Отмечаем на числовой оси числа -2, 0,5, 3.
Штриховка от -2 до - бесконечности, от 0,5 до - бесконечности, от 3 до + бесконечности.
Пересечение от -2 до - бесконечности.
Решения системы неравенства находятся в интервале х∈ (-∞, -2].
номер 3
Пусть производительность одной трубы - х, другой - у. Тогда при совместной работе, если всю работу обозначить за единицу, им потребуется 2 часа. При отдельной работе разница во времени составляет 3 часа, составим систему:
1 / (х + у) = 2,
1/х - 1/у = 3.
Из первого уравнения выразим х и подставим во второе:
1 = 2 * (х + у), 1 = 2х + 2у, 2х = 1 - 2у, х = 0,5 - у.
1 / (0,5 - у) - 1/у = 3,
у - (0,5 - у) = 3 * у * (0,5 - у),
у - 0,5 + у = -3у2 + 1,5у,
3у2 + 0,5у - 0,5 = 0,
D = b2 - 4ac
D = 0,25 - 4 * 3 * (-0,5) = 6,25.
у = (-b ± √D) / 2a
у = (-0,5 ± 2,5) / 6
у1 = -1/2, у2 = 1/3.
Решением является только положительное значение у2 = 1/3.
2) х = 0,5 - 1/3 = 1/2 - 1/3 = 3/6 - 2/6 = 1/6.
Т.е. одна труба наполняет за 1 час 1/3 цистерны, а другая 1/6. Значит одной трубе нужно 3 часа, а другой нужно 6 часов, чтобы наполнить всю цистерну при отдельной работе. Поэтому ответ задачи - 3 часа, данной трубе требуется меньшее время.
ответ: необходимо 3 часа
x = -π/30 + πn/5, n∈Z
x = π/3 + πm/2, m∈Z
Объяснение:
Разделим уравнение на 2, получим:
sin(7x) + √3/2*cos(3x) + 1/2*sin(3x) = 0
√3/2 и 1/2 можно заменить на sin(π/3) и cos(π/3) соответственно.
sin(7x) + sin(π/3) * cos(3x) + cos(π/3) * sin(3x) = 0
Дальше можно собрать формулу синуса суммы:
sin(7x) + sin(3x+π/3) = 0
Перенесем sin(3x+π/3) в правую сторону с противоположным знаком и с учетом нечетности синуса.
sin(7x) = sin(-3x - π/3)
Из последнего уравнения можно получить совокупность решений для x:
1) 7x = -3x - π/3 + 2πn
10x = -π/3 + 2πn
x = -π/30 + πn/5, n∈Z
2) 7x = π - (-3x - π/3) + 2πm
4x = 4π/3 + 2πm
x = π/3 + πm/2, m∈Z