М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
luiza2010
luiza2010
19.08.2022 14:22 •  Алгебра

Даны векторы а=-i+5k, b=-3i+2j+2k , c=-2i-4j+k необходимо: а)вычислить скалярное произведение двух векторов 2b и 3a б)найти
модуль векторного произведения 7а и -3с в) вычислить смешанное произведение трех векторов 3а , -4b , 2с г)проверить будут ли коллинеарны или ортогональны два вектора b и c д)проверить будут ли компланарны три вектора 7а , 2b , -3c

👇
Ответ:
raysat2
raysat2
19.08.2022

выпишем координаты данных векторов:

\vec{a}=(-1,0,5);\ \vec{b}=(-3,2,2);\ \vec{c}=(-2,-4,1)

a)

координаты:

3*\vec{a}=(3*(-1),3*0,3*5)=(-3,0,15)\\2*\vec{b}=(-6,4,4)

скалярное произведение векторов - число:

3\vec{a}*2\vec{b}=(-3)*(-6)+0*4+15*4=18+60=78

б)

координаты:

7*\vec{a}=(-7,0,35)\\(-3)*\vec{c}=(6,12,-3)

векторное произведение векторов - вектор, находим его координаты:

7\vec{a}\times (-3\vec{b})=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\-7 & 0 & 35 \\6 & 12 & -3\end{array}\right|=\vec{i}*\left|\begin{array}{cc}0 & 35 \\12 & -3\end{array}\right|-\vec{j}*\left|\begin{array}{cc}-7 & 35 \\6 & -3\end{array}\right|+\vec{k}*\left|\begin{array}{cc}-7 & 0 \\6 & 12\end{array}\right|=\vec{i}*(-12*35)-\vec{j}*(21-6*35)+\vec{k}*(12*(-7))=\\=-420\vec{i}+189\vec{j}-84*\vec{k}=(-420,189,-84)

находим модуль(длину) полученного вектора:

|7\vec{a}\times (-3\vec{b})|=\sqrt{420^2+189^2+84^2}=\sqrt{21^2(20^2+9^2+4^2)}=21\sqrt{497}

в)

координаты:

3\vec{a}=(-3,0,15)\\-4\vec{b}=(12,-8,-8)\\2\vec{c}=(-4,-8,2)

смешанное произведение векторов - число, находим его:

(3\vec{a},(-4\vec{b}),2\vec{c})=\left|\begin{array}{ccc}-3 & 0 & 15 \\12 & -8 & -8 \\-4 & -8 & 2\end{array}\right|=\\=-3*\left|\begin{array}{cc}-8 & -8 \\-8 & 2\end{array}\right|+15*\left|\begin{array}{cc}12 & -8 \\-4 & -8\end{array}\right|=-3(-16-64)+15(-96-32)=240-1920=-1680

г)

Координаты:

\vec{b}=(-3,2,2)\\\vec{c}=(-2,-4,1)

Векторы коллинеарны, если их соответствующие кординаты пропорциональны

Проверим это утверждение:

\frac{-3}{-2}\neq \frac{2}{-4}

Данное равенство неверно, значит векторы b и c не коллинеарны

Векторы ортогональны, если их скалярное произведение равно нулю.

Проверим это утверждение:

\vec{b}*\vec{c}=6-8+2=0

- верно, значит данные векторы ортогональны

Векторы b и c ортогональны

д)

Координаты:

7*\vec{a}=(-7,0,35)\\2*\vec{b}=(-6,4,4)\\(-3)*\vec{c}=(6,12,-3)

Три вектора компланарны, если их смешанное произведение равно нулю.

(7*\vec{a},2*\vec{b},(-3)*\vec{c})=\left|\begin{array}{ccc}-7 & 0 & 35 \\-6 & 4 & 4 \\6 & 12 & -3\end{array}\right|=-7*\left|\begin{array}{cc}4 & 4 \\12 & -3\end{array}\right|+35*\left|\begin{array}{cc}-6 & 4 \\6 & 12\end{array}\right|=-7(-12-48)+35*(-72-24)=420-3360=-2940

-2940 не равно нулю => данные векторы не компланарны.

4,6(43 оценок)
Открыть все ответы
Ответ:
kseniatrof
kseniatrof
19.08.2022
Геометрическая прогрессия
Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.

Любой член геометрической прогрессии можно вычислить по формуле:

Сумма первых n членов геометрической прогрессии определяется выражением

Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.

Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.

Пример 1
Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..

Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем

Пример 2
Найти сумму ряда .

Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна

Пример 3
Найти сумму ряда

Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой

то получаем следующий результат:

Пример 4
Выразить бесконечную периодическую дробь 0,131313... рациональным числом.

Решение.
Запишем периодическую дробь в следующем виде:

Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем

Пример 5
Показать, что

при условии x > 1.

Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде

что доказывает исходное соотношение.

Пример 6
Решить уравнение

Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:

Тогда уравнение принимает вид

Находим корни квадратного уравнения:

Поскольку |x| < 1, то решением будет .

Пример 7
Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.

Решение.
Используем формулу бесконечно убывающей геометрической прогрессии
4,7(21 оценок)
Ответ:
Яна13022016
Яна13022016
19.08.2022
Рассмотри две функции у=(m+3)x      и  y=n-1
это линейные функции, то есть их графики - прямые линии, а решение - это точка пересечения этих двух линий.
у=n-1 - это прямая параллельная оси Х, 
значит чтобы не было решений  график  у=(m+3)х - должен быть параллельным графику  у=n-1 , то есть оси Х
Это условие выполняется если m+3=0,  и  m=-3.  в этом случае график ф-ции у=(m+3)х   совпадает с осью Х,
  чтобы у=n-1 не совпадал с осью Х , должно выполняться условие
 n-1≠0,  n≠1
Значит уравнение не имеет корней, если одновременно  m=-3  и n≠1
4,8(99 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ