На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
Вектор, перпендикулярный плоскости 2x + 3y - 4z + 2 = 0 имеет координаты (2; 3; -4). Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить. Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости. Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости. Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости. Для этого составляем определитель: | x-(-3) 4-(-3) -1-(-3) | | y-2 -1-2 5-2 | = 0 | z-1 2-1 -3-1 |
На полуокружности АВ взяты точки C и D так, что дуга АC=37 градусов , дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равенR=15 см.Сделайте плз с чертежом и как можно понятнее каждое действие
построим рисунок по условию
дуга АC=37 -центральный угол АОС=37
дуга BD=23 --центральный угол АОС=37=23
тогда -центральный угол СОD=180-37-23=120
В треугольнике СОD сторона (хорда)CD
треугольник СОD -равнобедренный ОС=ОD=R=15
построим высоту к стороне CD, тогда СК=КD
высота ОК делит угол COD пополам КОD=120/2=60
рассмотрим треугольник ОКD-прямоугольный
в нем OD-гипотенуза, KD-катет
по свойству прямоугольного треугольника KD=OD*sin(KOD)=R*sin60=15*√3/2
тогда хорда CD=2KD=2*15*√3/2=15√3
ответ хорда CD=15√3