Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
ответ: 27 чисел. С - сумма, п - произведение. Числа по порядку:10(с=1, п=0), 11(с=2, п=1), 12(с=3, п=2), 13(с=4, п=3), 14(с=5, п=4), 15(с=6, п=5), 16(с=7, п=6), 17(с=8,п=7), 18(с=9, п=8), 19(с=10, п=9), 20(с=2, п=0), 21(с=3, п=2), 22(с=4, п=4), 30(с=3, п=0), 31(с=4, п=3),40(с=4, п=0), 41(с=5, п=4), 50(с=5, п=0), 51(с=6, п=5), 60(с=6, п=0), 61(с=7, п=6), 70(с=7, п=о), 71(с=8,п=7), 80(с=8, п=0), 81(с=9, п=8), 90(с=9, п=0), 91(с=10, п=9). сумма их цифр ПРЕВОСХОДИТ их произведение. По условию же надо, чтобы сумма не превосходила (то есть была либо равна, либо была бы меньше их произведения).ответ: Таких чисел 70. Это почти все двойные, а именно: 22, 33, 44, 55, 66, 77, 88, 99 и также: с 23 по 29 включительно, с 32 по 39 включительно, с 42 по 49 включительно, с 52 по59 включительно, с 62 по 69 вкл., с 72 по 79 вкл., с 82 по 89 вкл. Итого: 70 двузначных чисел
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.