Рассмотрим последние цифры степеней чисел 3 и 7 (очевидно, степени чисел 33 и 77 оканчиваются на те же цифры; в таблице последняя цифра числа x обозначена как x mod 10):
Дальше таблицу можно не продолжать: поскольку последняя цифра степени определяется только последней цифрой предыдущей степени, то дальше всё будет повторяться: например, для степеней тройки дальше идут 3, 9, 7, 1, 3, 9, ... Таким образом, последовательность последних цифр степеней тройки и семёрки является периодической с периодом 4, то есть прибавление любого количества четвёрок к показателю степени последнюю цифру не меняет.
, поэтому
оканчивается на ту же цифру, что и
, то есть на 3.
, поэтому
оканчивается на ту же цифру, что и
, то есть на 7. Значит, сумма
оканчивается на ту же цифру, что и
, то есть на 0. Искомый остаток равен нулю.
ответ. 0
1) 2x+y=11 2) 5x-2y+6 3) 3x-2y=30
2x-y=9, 7x+2y=18, x-4y=25, умножаем на (-3)
4x=20, 12x=24, 3x-2y=30
x=5 x=2 -3x+12y= -75,
10y= -45
2y= -9
y= -2/9
Объяснение:
1) 3x^2- 11x+7=0.
D=121-4*3*7=121-84=37
x1=(11-корень из 37)/6
х2=(11+корень из 37)/6
2) 2y^2 + 14=0.
2y^2=-14
y^2=-7
корней нет
3)2x^2 +4=0.
2x^2=-4
x^2=-2
корней нет