На трех складах была 29 тонна овощей. На третьем складе было на 4 тонны меньше, чем на первом, а на втором складе было в 3 раза больше, чем на третьем. Сколько тонн овощей было на каждом складе?
b+bq+bq^2+bq^3+bq^4+bq^5 = b*(1+q+q^2+q^3+q^4+q^5) = 364,5*(1+(8/9)+(8/9)^2+(8/9)^3+(8/9)^4+(8/9)^5) = 1662+53/162 = 1662,32716 сумма первых шести ее членов
Подпоследовательность сходящейся последовательности сходится к тому же пределу, что и исходная последовательность это обозначает, что оставшаяся последовательность будет сходящейся в обоих случаях и ее предел равен 8
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
ксюха решай сама
Объяснение:
я тебе завтра скажу арбуз и ты поёмешь кто это