1. Если х = 0, то у = 0, т. е. общая точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс (ось x)
3. Множеством значений функции у = х^2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х^2 - четная).
5. На промежутке [0; + ∞) функция у = х^2 возрастает
6. На промежутке (-∞; 0] функция у = х^2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует
1) у=-Х^2-2Х+13 это парабола т.к. старший коэфициент =-1 то ветки направлены вниз координаты вершины х=-b/2a= 2/-2=1 подставим в уравнение у=-1+2+13=14
зададим несколько точек для построения х=-5 -4-3 -2 -1 0 и так далее у=-2 5 10 13 14 13
2) у=-х-7 это прямая линия зададим 2 точки х= -5 -6 у= -2 -1
из графиков видно что чтобы прямая у=m имела с графиком ровно 2 общие точки она должна проходить через точку (-5;-2) значит m=-2 и через вершину в точке (-1;14) значит m=14 ответ m={-2;14)
График функции y = x^2 отображается параболой
Свойства:
1. Если х = 0, то у = 0, т. е. общая точку (0; 0) - начало координат
2. Если х ≠ 0, то у > 0, т. е. все точки параболы, кроме начала координат, лежат над осью абсцисс (ось x)
3. Множеством значений функции у = х^2 является промежуток [0; + ∞)
4. Противоположным значениям х соответствует одно и тоже значение у, т. е. если значения аргумента отличаются только знаком, то значения функции равны, график симметричен относительно оси ординат (функция у = х^2 - четная).
5. На промежутке [0; + ∞) функция у = х^2 возрастает
6. На промежутке (-∞; 0] функция у = х^2 убывает
7. Наименьшее значение функция принимает в точке х = 0, оно равно 0. Наибольшего значения не существует