F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
а)
x²/(x²-4)=(5x-6)/(x²-4) \×(x²-4) ОДЗ:x≠2
x²=5x-6
x²-5x+6=0
a=1, b=5, c=-6
D=b²/4×a×c=5²/4×1×(-6)=25+24=49
D>0=>2 корня
x=(-b+-√D)/2×a
x1=(-5+7)/2;x1=1
x2=(-5-7)/2;x2=-6
ответ:x1=1,x2=-6
b)
(x²-6x)/(x-5)=5/(5-x) ОДЗ:x≠5
(x²-6x)/(x-5)=-(5/(x-5)) \×(x-5)
x²-6x=-5
x²-6x+5=0
a=1, b=-6, c=5
D=(-6)²-4×1×5=36-20=16
D>0=>2 корня
x1=(6+4)/2;x1=5
x2=(6-4)/2;x2=1
x1 не соответствует ОДЗ
ответ:x=1
c)
2/3+4/x=x/12 ОДЗ:x≠0
8x/12x+48/12x=x²/12x \×12x
8x+48=x²
-x²+8x+48=0
a=-1,b=8,c=48
D=8²-4×(-1)×48=64+192=256
D>0=>2 корня
x1=(-8+16)/(-2);x1=-4
x2=(-8-16)/(-2);x2=12
ответ:x1=-4,x2=12