М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найдите координаты вершины параболы y=(x-2)² + 9

👇
Ответ:
1234567Саша
1234567Саша
01.05.2023

y=(x-2)² + 9

y=x²-4x+4+9

y=x²-4x+13

x₀= -b/2a= 4/2 = 2

y₀= 2²-4*2+13 = 4-8+13=9

Координаты вершины параболы  (2; 9)

4,7(99 оценок)
Открыть все ответы
Ответ:
lckzgizigzly
lckzgizigzly
01.05.2023
Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сп. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. Значит, третий сплав весит (100*4)/(Х+25)+(100*8)/Х кг.  С другой стороны, известно, что в третьем (новом) сплаве стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг - вес третьего сплава. Можем составить ур-е: (100*4)/(Х+25)+(100*8)/Х=40. Приводим его к виду Х^2-5*Х-500=0, получаем один корень Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг, а третий 40 кг
4,5(36 оценок)
Ответ:
kapitoshka202
kapitoshka202
01.05.2023
p(x)=a_{1}x^4+a_{2}x^3+a_{3}x^2+a_{4}x+a_{5}\\
 x=\sqrt{x_{1}}\\
 x=\sqrt{x_{1}}+b\\
 x=\sqrt{x_{1}}+2b\\
 x=\sqrt{x_{1}}+3b\\\\
 p(x)+a=a_{1}x^4+a_{2}x^3+a_{3}x^2 + a_{4}x+a_{5}+a\\
y=\sqrt{y_{1}}\\
y=\sqrt{y_{2}}\\
y=\sqrt{y_{3}}\\
y=\sqrt{y_{4}}\\\\ 




По теореме Виета для уравнение четвертой степени получаем соотношение   
4\sqrt{x_{1}}+6b = -\frac{a_{2}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+3b)+(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+...=\frac{a_{3}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b).........=-\frac{a_{4}}{a_{1}} \\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)=\frac{a_{5}}{a_{1}}\\\\ \sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}=-\frac{a_{2}}{a_{1}}\\
\sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]        

\left \{ {{4\sqrt{x_{1}}+6b=\sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}
 } \atop {\sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)-\sqrt{y_{1}y_{2}y_{3}y_{4}}=a} \right. \\

Учитывая условия что коэффициенты все выражаются в радикалах , то  сумма всех корней выраженные в радикалах есть число радикальное . 
  По третьем  равенству первой системы  \sqrt{x_{1}x_{2}x_{3}}=Rad  , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
4,5(22 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ