Объяснение:
1) Числа образуют арифметическую прогрессию с разностью d = 1.
S = (a1+aк)/2 * n, где n - количество, равное 199-101 = 98 чисел.
По-другому формула запишется:
S = (a1 + a1 +(n-1)d)/2 * n = (2a1 + (n-1)d)/2 * n
a1 = 101, n = 98, d = 1
S = (2* 101 + 97 * 1)/2 * 98 = 149 * 98 = 14602
2) Характеристическое свойство геометрической прогрессии:
bn² = bn+1 * bn-1
bn = 2x - 3
bn-1 = x + 1
bn+1 = x + 6
(2x - 3)² = (x + 1)(x + 6) ⇒ 4x² - 12x + 9 = x² + 7x + 6 ⇒ 3x² - 19x + 3 = 0 ⇒ x² - 19/3x + 1 = 0 ⇒ x1 + x2 = 19/3 по теореме Виета.
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114