М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nellimatveeva
nellimatveeva
03.09.2021 04:21 •  Алгебра

Найди корень уравнения 4x−10=64

👇
Ответ:
ruks777
ruks777
03.09.2021

Объяснение:

4x−10=64

4x=64+10

4x=74

x=74:4

x=18,5

4,8(19 оценок)
Ответ:
Sasha13353747
Sasha13353747
03.09.2021

это ответ,............


Найди корень уравнения 4x−10=64
4,7(71 оценок)
Открыть все ответы
Ответ:
lunova0921
lunova0921
03.09.2021

Объяснение:

1.а)6с

1.а)6с б)-15

2.a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2

a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2 b)\frac{- 7{x}^{3} + 14 {x}^{2} - 21x}{ - 7x} = \frac{ - 7x( {x}^{2} - 2x + 3) }{ - 7x} = x {}^{2} - 2x + 3b) −7x−7x 3

a) 2a−6a 2 +4= 2a2(−3a+2)= a−3a+2 b)\frac{- 7{x}^{3} + 14 {x}^{2} - 21x}{ - 7x} = \frac{ - 7x( {x}^{2} - 2x + 3) }{ - 7x} = x {}^{2} - 2x + 3b) −7x−7x 3 +14x 2 −21x = −7x−7x(x 2 −2x+3) =x 2 −2x+3

−2x+3) =x 2 −2x+3в)

−2x+3) =x 2 −2x+3в)\frac{ {9a}^{3} c -6 {a}^{2} {c}^{2} }{3 {a}^{2} {c}^{2} } = \frac{3 {a}^{2} {c}^{} (3 a - 2c)}{3a {}^{2} c {}^{2} } = \frac{3a - 2c}{c} то

3a 2 c 29a 3 c−6a 2 c 2 = 3a 2 c 23a 2 c (3a−2c)

23a 2 c (3a−2c)= c3a−2c

23a 2 c (3a−2c)= c3a−2c

3.на фотографии


1. Выполните деление одночлена на одночлен: А) (24а3с):(6а2); б) (-30х3у5):(5х2у3). 2. Выполните дел
4,4(14 оценок)
Ответ:
pron1983
pron1983
03.09.2021

1. f(x)=2+\sin 4x\\\\F(x)=2x-\frac{\cos4x}{4}+C.\\\\F(\frac{\pi}{4})=-3\pi;\\\\ 2\cdot\frac{\pi}{4}-\frac{\cos\pi}{4}+c=-3\pi;\\\\\frac{\pi}{2}+\frac{1}{4}+c=-3\pi \\\\ C=-3\pi-\frac{\pi}{2}-\frac{1}{4}\\\\C=-\frac{7\pi}{2}-\frac{1}{4}

Заданная первообразная - F(x)=2x-\frac{\cos4x}{4}-\frac{7\pi}{2}-\frac{1}{4}

F(\frac{7\pi}{4})=2\cdot\frac{7\pi}{4}-\frac{\cos7\pi}{4}-\frac{7\pi}{2}-\frac{1}{4}=\frac{7\pi}{2}+\frac{1}{4}-\frac{7\pi}{2}-\frac{1}{4}=0.

ОТВЕТ: 0.

2. f(x)=e^x+2x+1, \max_{[0;2]}F(x)=e^2.\\\\F(x)=e^x+x^2+x+C.

График данной первообразная вне зависимости от значения константы на заданном отрезке монотонно возрастает. Поэтому максимальное значение первообразная принимает на правом конце отрезка [0; 2] - т.е. при х = 2.

F(2)=e^2+2^2+2+C=e^2+6+C=e^2;\\\\e^2+6+C=e^2\\\\6+C=0\Rightarrow C=-6.

Заданная первообразная - F(x)=e^x+x^2+x-6.

Соответственно все из того же факта монотонного возрастания следует и то, что минимальное значение первообразная принимает на левом конце отрезка [0; 2] - т.е. при х = 0.

F(0)=e^0+0^2+0-6=1-6=-5.

ОТВЕТ: -5.

3. f(x)=-\frac{6}{x^2}=-6x^{-2}, x\in(-\infty; 0) \\\\F(x)=-6\cdot\frac{x^{-2+1}}{-2+1}+C=-6\cdot\frac{x^{-1}}{-1}+C=\frac{6}{x}+C.

По условию F(-2)=-3;

\frac{6}{-2}+C=-3;\\\\ -3+C=-3\Rightarrow C=0.

Заданная первообразная - F(x)=\frac{6}{x}.

Решим уравнение F(x)=f(x):

\frac{6}{x}=-\frac{6}{x^2}, x\neq 0 \\\\ 6\cdot x^2=x\cdot-6;\\\\6x^2+6x=0;\\\\6x(x+1)=0\Rightarrow x_1=0, x_2=-1.

Однако вспоминаем про ограничение для самой переменной: x\neq 0 (о чем прописано также и в условии существования первообразной). Делаем вывод: уравнение имеет единственное решение x=-1

ОТВЕТ: {-1}.

4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ