1)
2)
3)
1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)
2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)
3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)
4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)
4) y=x²
1) y=x²+5
2)y=x²-4
3)y=(x-3)²
4)y=(x+6)²
5)
На фото, c Ox пересекается график функции y=x²-4.
Точки пересечения с Ox (-2;0) и (2;0)
И y=x²-1
Точки пересечения с Ox (-1;0) и (1;0)
С Oy : y=x²-1, (0;-1)
y=x²+2,5 , (0;2,5)
y=x²-4, (0;-4)
y=x²+4,5, (0;4,5)
Три вида грибов было в 1 корзине.
Только два вида грибов было :
7 - 1 = 6 корзин - подосиновики и подберёзовики
6 - 1 = 5 корзин - подосиновики и белые
5 - 1 = 4 корзины - подберёзовики и белые
Только один вид грибов был :
16 - 1 - 6 - 5 = 4 корзины - подосиновики
17 - 1 - 6 - 4 = 6 корзин - подберёзовики
11 - 1 - 5 - 4 = 1 корзина - белые
Всего с подосиновиками, подберёзовиками и белыми
1 + 6 + 5 + 4 + 4 + 6 + 1 = 27 корзин.
29 - 27 = 2 корзины были с одними сыроежками.
ответ : 2 гнома принесли одни сыроежки.
Ищем производную заданной функции:
y'=-sinx-sin2x=-sinx-2sinx*cosx=-sinx(1+2cosx)=0
Отсюда находим критические точки (сразу выбираем те, которые принадлежат отрезку [0;2*pi]):
sinx=0
х=0, x=pi, x=2*pi
1+2cosx=0
x=(2*pi)/3, x=(4*pi)/3.
Все найденные точки изображаем на числовой оси и ищем промежутки возрастания (где производная больше нуля) и убывания (где меньше) функции.
(Рисуйте числовую ось и размещайте точки в таком порядке: 0, (2*pi)/3), pi, (4*pi)/3, 2*pi)
Берите любую внутреннюю точку из промежутка и подставляйте в выражение для производной. Если получится больше нуля, то там функция возрастает и.т.д.Если на соседних промежутках производная имеет разные знаки, там есть локальный экстремум(если "-" "+" - локальный минимум, если наоборот - локальный максимум)
Значит в точках х=0, x=pi, x=2*pi-функция имеет локальный максимум
в точках x=(2*pi)/3, x=(4*pi)/3-локальный минимум.
Ура!