М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Гавхарчик
Гавхарчик
29.12.2022 21:49 •  Алгебра

Выберите выражение,которое не делится на 3

👇
Ответ:
taklecovatana
taklecovatana
29.12.2022

Объяснение:

Первое выражение точно не делится на 3

4,5(80 оценок)
Открыть все ответы
Ответ:
esavinova66
esavinova66
29.12.2022
5)
a) 6x^2 + 24x = 6(x^2+4x) = 6(x^2+4x+4) - 6*4 = 6(x+2)^2 - 24
б) 18b^2 - 10b + 6 = 2(9b^2-5b) + 6 =
= 2((3b)^2-2*3b*5/6+(5/6)^2) - 2*(5/6)^2 + 6 =
= 2(3b-5/6)^2 + (6-50/36) =  2(3b-5/6)^2 + 4 11/18
в) 50w^2 + 20w + 7 = 2(25w^2 + 10w) + 7 =
= 2((5w)^2 + 2*5w*1 + 1^2) - 2*1^2 + 7 = 2(5w+1)^2 + 5
г) 54c^2 - 18c + 3 = 6(9c^2 - 3c) + 3 =
= 6((3c)^2 - 2*3c*1/2 + (1/2)^2) - 6*(1/2)^2 + 3 =
= 6(3c-1/2)^2 - 6/4 + 3 = 6(3c-1/2)^2 + 3/2

6)
a) (3n+2m)^3 = (3n)^3 + 3*9n^2*2m + 3*3n*4m^2 + (2m)^3 =
= 27n^3 + 54m^2*n + 36n*m^2 + 8m^3
б) (h + 2w)^3 = h^3 + 3h^2*2w + 3h*4w^2 + (2w)^3 =
= h^3 + 6h^2*w + 12h*w^2 + 8w^3
в) (5p + 5t)^3 = (5p)^3 + 3*25p^2*5t + 3*5p*25t^2 + (5t)^3 =
= 125p^3 + 375p^2*t + 375p*t^2 + 125t^3
г) (6c + 7i)^3 = (6c)^3 + 3*36c^2*7i + 3*6c*49i^2 + (7i)^3 =
= 216c^3 + 756c^2*i + 882c*i^2 + 343i*3
4,4(58 оценок)
Ответ:
Vampir181
Vampir181
29.12.2022
Исследовать функцию: f(x)= \frac{x^2+1}{2x}
    • Область определения функции:
               x\ne 0\\ D(f)=(-\infty;0)\cup(0;+\infty)
• Точки пересечения с осью Ох и Оу:
     Точки пересечения с осью Ох: нет.
     Точки пересечения с осью Оу: Нет.
• Периодичность функции.
     Функция  не периодическая.
• Критические точки, возрастание и убывание функции:
    1. Производная функции:
f'(x)= \frac{(x^2+1)'\cdot 2x-(x^2+1)\cdot(2x)'}{(2x)^2} = \frac{x^2-1}{x^2}
    2. Производная равна 0.
f'(x)=0;\,\,x^2-1=0;\,\,\,\,\Rightarrow\,\,\,\,x=\pm1

___-__(-1)____+__(0)____-___(1)___+___

х=-1 - точка минимума
х=1 - точка минимума

f(1) = 1 - Относительный минимум
f(-1) = -1 - Относительный минимум

Функция возрастает на промежутке: x ∈ (-1;0) и (1;+∞), а убывает на промежутке: (-∞;-1) и (0;1).

• Точка перегиба:
  f''(x)= \frac{(x^2-1)'2x^2-(x^2-1)\cdot(2x^2)'}{(2x^2)^2} = \frac{1}{x^3}
Очевидно что точки перегиба нет, т.к. f''(x)\ne 0

• Вертикальные асимптоты: x=0.

• Горизонтальные асимптоты: \lim_{x\to \pm \infty} f(x)=\pm \infty

• Наклонные асимптоты: \lim_{x \to \infty} ( \frac{1}{2x} +0.5x)=0.5x

График приложен
Исследовать функцию и составить график (x^2+1)/2x расписать!
4,5(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ