(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
2 * cos ^ 3 x + 1 = cos ^ 2 (- 3 * п/2 - x);
2 * cos ^ 3 x + 1 = cos ^ 2 (- (3 * п/2 + x));
2 * cos ^ 3 x + 1 = cos ^ 2 (3 * п/2 + x);
2 * cos ^ 3 x + 1 = cos (3 * п/2 + x) * cos (3 * pi/2 + x);
2 * cos ^ 3 x + 1 = sin x * sin x;
2 * cos ^ 3 x + 1 - sin ^ 2 x = 0;
2 * cos ^ 3 x + sin ^ 2 x + cos ^ 2 x - sin ^ 2 x = 0;
2 * cos ^ 3 x + cos ^ 2 x = 0;
cos ^ 2 x * (2 * cos x + 1) = 0;
1) cos ^ 2 x = 0;
cos x = 0;
x = pi/2 + pi * n, где n принадлежит Z;
2) 2 * cos x + 1 = 0;
2 * cos x = - 1;
cos x = - 1/2;
x = + - arccos (-1/2) + 2 * pi * n, где n принадлежит Z;
x = + - 2 * pi/3 + 2 * pi * n, где n принадлежит Z;
ответ: x = pi/2 + pi * n и x = + - 2 * pi/3 + 2 * pi * n, где n принадлежит Z.
Объяснение: