М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Unikorn111
Unikorn111
02.02.2021 00:50 •  Алгебра

Определи наименьший номер, начиная с которого все члены последовательности (xn) будут не меньше заданного числа A:

xn=2n2−38, A=−7.

ответ:

1. выбери соотношение, необходимое при решении задачи:

2n2−38≥−7
2n2−38>−7
2n2−38≤−7
2. Наименьший номер (запиши число): n=
.

👇
Ответ:
Danilalmaz
Danilalmaz
02.02.2021
Добрый день! Рассмотрим данную задачу.

1. Необходимо определить наименьший номер, начиная с которого все члены последовательности (xn) будут не меньше заданного числа A=-7. Для этого нужно составить неравенство, которое будет описывать данное условие.

2. Пусть n - это номер члена последовательности (xn). Тогда по условию задачи xn = 2n^2 - 38.

3. Имеем неравенство 2n^2 - 38 ≥ -7. Для упрощения выражения мы можем перенести -7 на другую сторону и получим: 2n^2 - 38 + 7 ≥ 0.

4. Преобразуем выражение: 2n^2 - 31 ≥ 0.

5. Теперь можем решить неравенство. Для этого найдем значения n, при которых выражение 2n^2 - 31 принимает значение не меньше нуля.

6. Найдем точки, в которых значение выражения равно нулю: 2n^2 - 31 = 0. Решим это квадратное уравнение.

2n^2 - 31 = 0,
2n^2 = 31,
n^2 = 31 / 2,
n = ±√(31 / 2).

7. Мы видим, что имеется два значения n, при которых выражение равно нулю: n = √(31 / 2) и n = -√(31 / 2).

8. График функции 2n^2 - 31 является параболой, которая открывается вверх. Значения выражения больше нуля на интервалах между корнями этого уравнения. Искомый номер n должен быть больше, чем корни уравнения, чтобы значение 2n^2 - 31 было не меньше нуля.

9. Поскольку мы ищем наименьший номер, то нас интересует только положительное значение √(31 / 2), которое примерно равно 3.5.

10. Ответ: наименьший номер, начиная с которого все члены последовательности (xn) будут не меньше заданного числа A=-7, равен n = 4.
4,6(42 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ