Составьте квадратное уравнение корнями которого являются числа: 1+корень из 5 и 1-корень из 5 и со старшим коэфициентом 5 в ответе укажите коэфициент пр x и свободный член
при любом значении b решите уравнение : (x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0
(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ; ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4. --- x²+(3b+2)x+2b² +3b+1=0 ; D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0 всегда имеет решения : x₁ = (-3 b- 2 - b)/2 = -1 - 2b , если -1 - 2b ≠ 1 и -1 - 2b ≠ 4 , т.е. если b ≠ -1 и b ≠ -2,5. x₂ = (- 3b - 2 +b)/2 = -1 - b , опять если -1 - b ≠ 1 b и -1 - b ≠ 4 , . т.е. если b ≠ -2 и b ≠ - 5.
* * * * P.S. Можно было в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить x =1 и x = 4 в качестве корней;
1) 1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ b² +3b+2 =0 ⇒[ b = -2 ; b = -1 . 2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .
1)область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=5(-х)²+1=5х²+1=y(x) - значить дана функція парна за означенням парної функції
2) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=(-х)⁵+3(-х)³-(-х)=-х⁵-3х³+х=-(х⁵+3х³-х)=-y(x) значить дана функція непарна за означенням непарної функції
3) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=2*1⁴-1³+1=2-1+1=2
y(-1)=2*(-1)⁴-(-1)³+1=2+1+1=4
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна
4) область визначення множина дійсних чисел, за виключенням точки 0 (симетрична відносно початку координат)
y(-x)=3(-х)-2/(-х)=-3x+2/x=-(3x-2/x)=-y(x) значить дана функція непарна за означенням непарної функції
5) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=4*1²+[1]=4+1=5
y(-1)=4(-1)²+[-1]=4-1=3
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна