-x+3y=a 3x-9y=-(-3x+9y)=5→-3x+9y=-5 -x+3y= -5/3 a= -5/3 мы видим, что при найденном а заданные 2 уравнения совпадают - это одна прямая и любая ее точка это решение.
можно иначе -1/3=-3/9=а/5 а=5*(-1/3)=-5/3
m+4n=10 2m+8n=20 умножив первое уравнение на число 2 получим второе - итак,бесконечное м-во решений.
m+4n=10 2m+8n=-20 m+4n=-10 не имеет ни одного решения так как это параллельные прямые
m+4n=10 m=-4n+10 2m-8n=20 m-4n=-10 m=4n-10 имеет единственное решение - графически это две прямые с разными угловыми коэфф. 4n и -4n.
m+4n=10 0.5m+2n=5 ⇔ m+4n=10 беск. много решений
легче всего такие системы решать с детерминанта, для двух уравнений это квадратная табличка 2х2 в нее записывают коэффициенты первого уравнения в первой строке и второго во второй.
скажем для задачи m+4n=10 2m+8n=-20 табличка имеет вид
1 4 2 8 далее считаем так 1*8-2*4=0 это определитель, если он равен 0, то решений нет или их бесконечно много.
в другой задаче m+4n=10 2m-8n=20
1 4 2 -8 1*(-8)-2*4=-8-8=-16≠0 система с единственным решением
Cделаем замену x2 + 4x = t, тогда уравнение будет выглядеть следующим образом:
(t – 5)(t – 21) = 297.
Раскроем скобки, приведем подобные слагаемые:
t2 – 21t – 5t + 105 = 297;
t2 – 26t – 192 = 0.
По теореме Виета определяем, что корнями полученного уравнения будут числа -6 и 32.
После обратной замены будем иметь:
x2 + 4x = -6 или x2 + 4x = 32
x2 + 4x + 6 = 0 x2 + 4x – 32 = 0
D = 16 – 24 < 0 D = 16 + 128 > 0 ((x – 1)(x + 5))((x – 3)(x + 7)) = 297;
(x2 + 5x – x – 5)(x2 + 7x – 3x – 21) = 297;
(x2 + 4x – 5)(x2 + 4x – 21) = 29Нет корней x1 = -8; x2 = 4
Найдем произведение корней: -8 · 4 = -32.
ответ: -32.