Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.
Как и говорил, решение совсем уж искусственное. Находим ОДЗ, x принадлежит (1;+беск). При таких x третье слагаемое всегда будет отрицательным, второе же будет отрицательным при x>2. Подстановкой ищем такой x, который будет подходить и к первому логарифму и ко второму, это будет x=4. 10/(4+1)+log1/3(3)+log1/4(4)=2-1-1=0, нашли максимально возможный икс. Так как минимальное значение третьего слагаемого -1, то мы можем смело говорить, что при x от одного до четырех оно будет больше -1. Ровно как и второе слагаемое, а первое будет с уменьшением значения x только увеличиваться, значит можем брать первую точку из ОДЗ, следовательно x принадлежит от 1(не включая) до 4х включительно(так как больше либо равно). Какое-то сочинение написал, но нормального решения не нашел, извиняюсь за возможную неточность понятий.
Первый сотрудник получается работал 10 дней и сделал (540-380)=160 страниц. Его производительность будет равна 160\10=16 страниц в день
Второй сотрудник сделал работу за 19 дней и обработал 380 страниц. Его производительность равна 380\19=20 страниц в день
Подсчитаем среднюю производительность: (16+20)\2=18 страниц в день. Это производительность, работая с которой оба сотрудника сделают работу за одинаковое количество дней.
Теперь найдем отношение средней производительности к производительности сотрудников: 18\16=9\8=1,125 во столько раз надо увеличить производительность первого
18\20=0,9 во столько раз надо уменьшить производительность второго
1)Решение системы уравнений х=3
у=2
2)Система имеет бесконечное множество решений.
3)Система уравнений не имеет решений.
Объяснение:
Решите графически систему уравнений:
1) -x+3y=3
x-y=1
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
-x+3y=3 x-y=1
3у=3+х -у=1-х
у=(3+х)/3 у=х-1
Таблицы:
х -3 0 3 х -1 0 1
у 0 1 2 у -2 -1 0
Согласно графика, координаты точки пересечения графиков данных уравнений (3; 2)
Решение системы уравнений х=3
у=2
2)x+y=0
3x+3y=0
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x+y=0 3x+3y=0
у= -х 3у= -3х
у= -3х/3
у= -х
Таблицы:
х -1 0 1 х -1 0 1
у 1 0 -1 у 1 0 -1
Графики сливаются, система имеет бесконечное множество решений.
3)x-y=2
2x+5=2y
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде нужно преобразовать уравнения в более удобный для вычислений вид:
x-y=2 2x+5=2y
-у=2-х -2у= -2х-5
у=х-2 2у=2х+5
у=(2х+5)/2
Таблицы:
х -1 0 1 х -1 0 1
у -3 -2 -1 у 1,5 2,5 3,5
Прямые параллельны, система уравнений не имеет решений.