5040
Объяснение:
Чтобы решить эту задачу, нужно использовать теорию вероятности.
У нас есть 7 разрядов, куда будут подставляться цифры (число 5720198 - семиразрядное) и 7 вариантов цифр для каждого разряда (5,7,2,0,1,9,8). Кроме того мы знаем, что цифры будут перестанавливаться, а значит каждый из вариантов цифр может появляться в примере только один раз. Все готово для решения.
В первом разряде может присутствовать любой из семи вариантов:
7
Во втором - на один меньше, так как один из вариантов уже присутствует в перовом разряде.
7*6
В третьем - еще на один меньше по той же причине
7*6*5
В итоге получаем следующий пример:
7*6*5*4*3*2*1 = 5040
В краткой форме это будет выглядеть так:
7!=5040
ответ: 5040 вариантов
Объяснение:
Во-первых, область определения
-x^2 - 8x - 7 >= 0
x^2 + 8x + 7 <= 0
(x + 1)(x + 7) <= 0
x = [-7; -1]
Во-вторых, выделяем корень
√(-x^2 - 8x - 7) = -ax + 2a + 3
Возводим в квадрат
-x^2-8x-7 = (-ax+2a+3)^2 = a^2*x^2-4a^2*x+4a^2-6ax+12a+9
x^2*(a^2 + 1) + x*(8 - 4a^2 - 6a) + (7 + 4a^2 + 12a + 9) = 0
x^2*(a^2 + 1) + 2x*(-2a^2 - 3a + 4) + (4a^2 + 12a + 16) = 0
Получили квадратное уравнение.
Если оно имеет только 1 корень, то D = 0
D/4 = (-2a^2 - 3a + 4)^2 - (a^2 + 1)(4a^2 + 12a + 16) =
= (4a^4 + 12a^3 + 9a^2 - 16a^2 - 24a + 16) -
- (4a^4 + 4a^2 + 12a^3 + 12a + 16a^2 + 16) =
= 9a^2 - 16a^2 - 24a - 4a^2 - 12a - 16a^2 = -27a^2 - 36a = -9a(3a + 4) = 0
a1 = 0; a2 = -4/3
Подставляем эти а и проверяем х.
1) a = 0
0 + √(-x^2 - 8x - 7) = 3
-x^2 - 8x - 7 = 9
-x^2 - 8x - 16 = -(x + 4)^2 = 0
x1 = x2 = -4
2) a = -4/3
-4x/3 + √(-x^2 - 8x - 7) = -8/3 + 3 = 1/3
√(-x^2 - 8x - 7) = 4x/3 + 1/3 = (4x + 1)/3
9(-x^2 - 8x - 7) = (4x + 1)^2
-9x^2 - 72x - 63 = 16x^2 + 8x + 1
25x^2 + 80x + 64 = (5x + 8)^2 = 0
x1 = x2 = -8/5