3/(x+2) = 4+3/(x-1) ОДЗ: x+2 ≠ 0 и x-1 ≠ 0
x ≠ - 2 и x ≠ 1
3/(x+2) = 4 + 3/(x-1) | *(x+2)*(x-1)
3*(x-1) = 4*(x+2)*(x-1) + 3 *(x+2)
3х - 3 = 4(х² -х + 2х -2) + 3х + 6
3х - 3 = 4(х² + х - 2) + 3х + 6
3х - 3 = 4х² + 4х - 8 + 3х + 6
3х - 3 = 4х² + 7х - 2
4х² + 7х - 2 - 3х + 3 = 0
4х² + 4х + 1 = 0
D = 16 - 4*4 16 -16 = 0
х₁ = х₂ = - 4/8 = - 1/2 (удовлетворяет ОДЗ)
ответ: - 1/2.
a₁=b₁=3
a₁+d=b₁q=a₁q d=a₁q-a₁
a₁q²/(a+2d)=9/5
5a₁q²=9*(a₁+2d)
5a₁q²=9a₁+18d
5a₁q²=9a₁+18*(a₁q-a₁)
5a₁q²=9a₁+18a₁q-18a₁
5a₁q²=18a₁q-9a₁ |÷a₁
5q²=18q-9
5q²-18q+9=0 D=144 √D=12
q₁=3 ⇒ d=3*3-3=9-3=6
q₂=0,6 ⇒ d=3*0,6-3=-1,2 ⇒
1) Геометрическая прогрессия (b₁=3, q=3): 3; 9; 27; 81; ...
Арифметическая прогрессия (a₁=3, d=6): 3; 9; 15; 21; ...
2) Геометрическая прогрессия (b₁=3, q=0,6): 3; 1,8; 1,08; ...
Арифметическая прогрессия (a₁=3, d=-1,2): 3; 1,8; 0,6; ...
У каждого из членов дружной бригады Ах+ В=0 было свое имя.
Главным в этой компании выступал Коэффициент, от которого зависела линия поведения остальных.
Если он был Отрицательным, то так прогибал прямую к оси Ох, что остальным это не нравилось.
Если Коэффициент называл себя Положительным, то друзья радовались его хорошему настроению. А вот если Коэффициент равнялся нулю, его нигде не могли найти.
Совсем по - иному обстояло дело с числом в. Оно прыгало то вверх по оси Оу, то вниз, то и вовсе оказывалось равным нулю.
Кстати, дружба этих членов бригады Линейного уравнения не ограничивалась только коэффициентами. Они еще могли плясать под дудку знака равенства, куда их посылали, туда и убегали. Благо, можно было менять знак, при переходе через границу - через равно. Вот так и жили не тужили, пока не повстречались с Вовочкой, пятиклассником, который не знал этих правил. Но это уже тема другой сказки.
Упростим выражение:
3/(x+2)=7/(x-1)
Составим пропорцию:
7(x+2)=3(x-1)
7x+14=3x-3
4x=-17
x=-17/4
x= -4 1/4