Сума трьох чисел, що утворюють геометричну прогресію, дорівнює 63. Якщо до цих чисел додати відповідно 7; 18 і 2, то утвориться арифметична прогресія. Знайти ці числа.
Строишь график функции y = 3x² и сдвигаешь его на 2,5 единичных отрезка влево. (Ты вообще можешь сразу провести пунктиром линию x = 2,5 (это вертикальная линия, которая пересекается с осью Оx в точке 2,5) и строить свой график, как будто твой пунктир - это ось Оy). График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12). Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).
Принцеп такой же подумай. Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент. В данном случае: 1) 3х-y+6=0 -y= -6-3x y=3x+6, здесь k1=3
2) x-y+4=0 -y= -x-4 y=x+4, здесь k2=1
Воспользуемся формулой tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем: tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2 всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.
График y = 3x² строится как зауженная парабола, проходящая через точки (0; 0), (1; 3), (2; 12), (-1; 3), (-2; 12).
Окончательный график (ну, тот, который и надо было построить) будет проходить через точки, у которых вторая координата, т.е. y, будет такая же, как у графика y = 3x², а первую, т.е. x, каждый раз надо уменьшать на 2,5. Т.е. это будут точки (-2,5; 0), (-1,5; 3), (-0,5; 12), (-3,5; 3), (-4,5; 12).