7/Задание № 5:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько зелёных яблок в первой корзине?
РЕШЕНИЕ: Пусть в первой корзине а яблок. Это число а должно делиться на 9, так как 7/9 первой корзины составляют зелёные яблоки, а это натуральное число. Пусть во второй корзине b яблок, тогда по той же причине b должно быть кратно 17, так как 9/17 второй корзины - красные яблоки.
Тогда уравнение 9p+17q=79 даст такие натуральные p и q, что p - (1/9) часть яблок в первой корзине, q - (1/17) часть яблок во второй корзине.
9p+17q=79
17q=79-9p
p=1: 79-9=70, 70 не делится на 17
p=2: 79-18=61, 61 не делится на 17
p=3: 79-27=52, 52 не делится на 17
p=4: 79-36=43, 43 не делится на 17
p=5: 79-45=34, q=34/17=2
p=6: 79-54=25, 25 не делится на 17
p=7: 79-63=16, 16 не делится на 17 и результат менее наименьшего натурального числа 1, поэтому проверку можно завершить.
Значит, p=5 - (1/9) часть яблок в первой корзине, зеленых же яблок 7/9 от общего числа, то есть в 7 раз больше, чем величина р: 5*7=35.
ОТВЕТ: 35 яблок
Пусть х ч - время работы одного крана, тогда (х + 5) ч - время работы другого крана.
Работу по разгрузке примем за единицу, тогда 1/х - работа, которую выполнит первый кран за 1 ч, 1/(х+5) - работа, которую выполнит второй кран за 1 ч, 1/6 - совместная работа за 1 ч. Уравнение:
1/х + 1/(х+5) = 1/6
Приводим обе части уравнения к общему знаменателю х · (х +5) · 6
(х + 5) · 6 + х · 6 = х · (х + 5)
6х + 30 + 6х = х² + 5х
х² + 5х - 12х - 30 = 0
х² - 7х - 30 = 0
D = b² - 4ac = (-7)² - 4 · 1 · (-30) = 49 + 120 = 169
√D = √169 = ±13
х = (-b±√D)/2a
х₁ = (7-13)/(2·1) = (-6)/2 = -3 (не подходит, так как < 0)
х₂ = (7+13)/(2·1) = 20/2 = 10 (ч) - время работы одного крана
10 + 5 = 15 (ч) - время работы другого крана
ответ: 10 ч и 15 ч.
14х=280
х=280:14=20
разнорабочие — 7*20=140
ответ: 140