М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alisheralisher2
alisheralisher2
11.12.2021 04:49 •  Алгебра

Sin^2x – 4 sin2x +7 cos^2x=0

👇
Ответ:
kirillyamont2
kirillyamont2
11.12.2021

Решение: На фотографии


Sin^2x – 4 sin2x +7 cos^2x=0
4,4(13 оценок)
Открыть все ответы
Ответ:
08122005vlad
08122005vlad
11.12.2021

ответ: 24 см и 12 см.

Объяснение:

Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:

(a-b)/2=6

(a+b)/2=18

или:

a-b=12

a+b=36

Решая её, находим a=24 см и b=12 см.

4,5(71 оценок)
Ответ:
Примем за базу индукции n=5. Проверим истинность выражения при n=5:
2^5\ \textgreater \ 5*5+1 \\ 32\ \textgreater \ 26
Получили верное неравенство => базис доказан. 

Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: 
2^k\ \textgreater \ 5k+1 .
Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5.
\\2^{k+1}\ \textgreater \ 5*(k+1)+1\\
Используем наше предположение:
2^k\ \textgreater \ 5k+1 => 2^k*2\ \textgreater \ 2*(5k+1) => 2*(5k+1)\ \textgreater \ 5k+6
10k+2\ \textgreater \ 5k+6

Проверим истинность последнего неравенства:
10k+2\ \textgreater \ 5k+6\\5k\ \textgreater \ 4
k\ \textgreater \ 0.8

Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.  
4,6(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ