Пусть х(км/ч)-собственная скорость лодки. Тогда скорость по течению (х+2)км/ч, а скорость против течения (х-2)км/ч. Время движения лодки по течению равно 16/х+2 (ч), а против течения 16/х-2 (ч). Если по течению лодка тратит на 12мин меньше времени, значит против течения она тратит на 12мин больше. 12мин=1/5ч. Составим и решим уравнение:
16/(х-2)-16/(х+2)=1/5. ОДЗ: х-не равен 2 и -2.
Умножаем обе части уравнения на 5(х-2)(х+2), получаем уравнение:
80(х+2)-80(х-2)=(х-2)(х+2),
80х+160-80х+160-х(в квад)+4=0,
-х(в квад)+324=0,
х(в квадр)=324,
х=18,
х=-18-не является решением задачи
18(км/ч)-собственная скорость лодки
1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0:
3х=0 или 2х-1=0
первый корень х=0
2х-1=0
2х=1
х=1/2 - второй корень.
2)25х^2=1 x^2=1/25 x=+- 5
3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac
D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4
4)4x^2+20x+1=0
D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня
5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный
6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2
7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.