V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Тогда так. Какие бы не были эти XYZ будет образовано корректное шестизначное число. (Ну точнее X в диапазоне от 1 до 9, а Y и Z в диапазоне от 0 до 9, иначе шестизначное число не выйдет).
XYZZYX=XYZ*1000+ZYX. Поэтому сумма всех таких чисел это сумма ВСЕХ трехзначных чисел + сумма всех трехзначных чисел умноженная на 1000.
Теперь осталось найти сумму всех трехзначных чисел. Это не сложная задача:
Всего трёхзначных чисел 900: 100, 101, 102, …, 997, 998, 999 Сгруппируем попарно числа с противоположных концов: (100 + 999) + (101 + 998) + (102 + 997) + … = (1099 · 900 / 2) = 989100 / 2 = 494550 сумма каждой пары равна 1099 число пар равно половине всех чисел 900 / 2
Объяснение:
Я все написала если что то не примешь напиши