проверено.
![a_{k+1}=a_1+d[(k+1)-1]=a_1+dk](/tpl/images/0582/6750/35dc7.png)
то прибавив к данному выражению d. Мы получим следующий член
.![S_n= \frac{n[2a_1+d(n-1)]}{2}](/tpl/images/0582/6750/67d86.png)
. ![n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}](/tpl/images/0582/6750/b9ca4.png)
:
получается деление на ноль, поэтому сразу пишем 


:![b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}](/tpl/images/0582/6750/552be.png)
Пусть рабочие по плану делали в день а деталей, и могли выполнить план за д дней. Но изготавливая по (а + 4) детали в день сократили время до (д - 1) дней.
Составим равенства:
а * д = 369 (дет); (1)
(а + 4) * (д - 1) = 369: а * д + 4 * д - 1 * а - 4 = 369; заменим из (1) а * д = 369 во втором равенстве:
360 + 4 * д - а - 4 = 369; 4 * д - а = 4; а = 4 * д - 4;
Вставим в (1) полученное равенство а = 4 * д - 4;
(4 * д - 4) * д = 369; (д - 1) * д = 369/4 = 90;
д^2 - д - 90 = 0. д1,2 = 1/2 +- √1/4 + 90 = 1/2 +- √361/4 = (1 +19)/2 = 10 дней. д - 1 = 9 дней
а = 4 * 10 - 4 = 36 (дет). 36 + 4 = 40 дет.
для начала возьмем 5x и ставим равно
5x=
а теперь подставляет эти числа (2;5)
5х=5-2=3
теперь надо 5 отнять 3
=2
и в итоге получается ответ:2