а) к≠3, любое из чисел. например -9, или 14 - единственное решение.
не имеет решений, когда к=3 прямые параллельны, общих точек нет.
чтобы система имела решение, надо, чтобы прямые совпадали. т.е. к=3, а вместо 4 поставить -5, но т.к. уже 4 подобрана, то подобрать невозможно.
б) аналогично. упростим первое у=1.5х,
единсвт. решение , когда угловые коэф. различные -подобрать невозможно. при к-2 бесконечное множество решений. прямые совпадут. а при к≠-2 решений нет. т.к. прямые параллельны.
в)у=0.5-кх/2; у=0.5-4х
При к=8 бесконечное число решений, при к≠8 единственное, а для того, чтобы система не имела решений, к подобрать невозможно, т.к. уже совпадают 0.5 и 0.5- это ординаты точек пересечения графиков с осью оу.
Объяснение:
x/2 = (-1)^n arcSin(-1/2) + nπ, n ∈Z
x/2 = (-1)^(n+1) *π/6 + nπ, n ∈Z
x = (-1)^(n+1)*π/3 + 2nπ, n ∈Z
б) 2XosxCos4x - Cosx = 0
Cosx(2Cos4x -1) = 0
Cosx = 0 или 2Cos4x -1=0
x = π/2 + πk , k ∈Z Cos4x = 1/2
4x = +-arcCos1/2 + 2πn, n ∈Z
4x = +- π/3 + 2πn, n ∈Z
x = +-π/12 + πn/2 , n ∈Z
в) Sinx +√3Cosx = 0
Sinx = -√3Cos x |²
Sin²x = 3Cosx
1 - Cos²x = 3Cosx
Cos²x +3 Cosx -1 = 0
решаем как квадратное
D = 13
Cosx = (-3+√13)/2 нет решений.
Сosx = (-3 -√13)/2 нет решений