y = x + 3 - линейная функция, значит и исходная функция у = (x³ + x² - 6x)/(x² - 2x) также является линейной
Допишу, чтобы понятнее было..))) Любое квадратное уравнение вида ax²+bx+c преобразуется в произведение вида: a(x-x₁)(x-x₂), где x₁ и x₂ - корни данного квадратного уравнения
Подкоренное выражение для арифметического квадратного корня должно быть неотрицательным. То есть выражение √(х(х² - 4)) имеет решения ( и смысл, разумеется..))) при: х(х² - 4) ≥ 0 х(х - 2)(х + 2) ≥ 0 Решаем системы {x ≥ 0 {x ≤ 0 {x ≤ 0 {x ≥ 0 {x ≥ 2 {x ≤ 2 {x ≥ 2 {x ≤ 2 {x ≥ -2 {x ≥ -2 {x ≤ -2 {x ≤ -2
[2; ∞) [-2; 0] нет реш-я нет реш-я Таким образом, подкоренное выражение будет неотрицательным в промежутке х∈[-2; 0] U [2; ∞) Это называется "Найти Область Определения Функции", то есть значения, которые может принимать х. Образующиеся при этом значения у составляют "Множество Значений Функции"
Решаем квадратное уравнение x² + x - 6 = 0 D=b²-4ac=25=5²
x₁=(-b+√D)/2a=(-1+5)/2 = 2
x₂=(-b-√D)/2a=(-1-5)/2 = -3 тогда:
(x² + x - 6))/(x - 2) = ((x - 2)(x + 3))/(x - 2) = x + 3
y = x + 3 - линейная функция, значит и исходная функция
у = (x³ + x² - 6x)/(x² - 2x) также является линейной
Допишу, чтобы понятнее было..)))
Любое квадратное уравнение вида ax²+bx+c преобразуется в произведение вида:
a(x-x₁)(x-x₂), где x₁ и x₂ - корни данного квадратного уравнения