3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x tg²x+6tgx+8=0 tgx=a a²+6a+8=0 a1+a2=-6 U a1*a2=8 a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
Исследовать функцию: у(x)=x^3/3-x^2+6 1. Область определения функции (-бесконечность;бесконечность) 2. Множество значений функции (-бесконечность;бесконечность) 3. Проверим, является ли функция четной или не четной? у(x)=x^3/3-x^2+6 у(-x)=(-x)^3/3-(-x)^2+6=-x^3/3-x^2+6, так как у(x) не=у(-x) и у(-x) не=-у(x), то данная функция не является ни четной ни не четной. 4. Найдем координаты точек пересечения графика функции с осями координат: а) с осью ОХ: у=0, x^3/3-x^2+6=0, данное уравнение не имеет рационального корня, а корень принадлежит промежутку (-2;-1) б) с осью ОУ: х=0, тогда у=6. Следовательно график функции пересекает ось ординат в точке (0;6) 5) Найдем точки экстремума функции и промежутки возрастание и убывания: у'(x)=x^2-2x; f'(x)=0 x^2-2x=0 x1=0 x2=2. Получили две стационарные точки, проверим их на экстремум: Так как на промежутках (-бесконечность;0) и (2; бесконечность) у'(x)>0, то на этих промежутках функция возрастает. Так как на промежутке (0;2) у'(x)<0, то на этом промежутке функция убывает. Так как при переходе через точку х=0 производная меняет свой знак с + на - ,то в этой точке функция имеет максимум у(0)=0-0+6=6 Так как при переходе через точку х=2 производная меняет свой знак с - на + то в этой точке функция имеет минимуму у(2)=8/3-4+6=14/3 6. Найдем точки перегиба функции и промежутки выпуклости: y"(x)=2x-2; y"(x)=0 2x-2=0 x=1 Так как на промежутке (-бесконечность; 1) y"(x)<0, то на этом промежутке нрафик функци направлен выпуклостью вверх. Так как на промежутке (1;бесконечность) y"(x)>0, то на этом промежутке график функции направлен выпуклотью вниз Так как при переходе через точку х=1 вторая производная меняет свой знак, то точка х=1 является точой перегиба. y(1)=1/3-1+6=16/3 7. проверим имеет данная функция асимптоты: а) вертикальные Так как точек разрыва функция не имеет, то она не имеет вертикальных асимптот. б) наклонные вида у=kx+b k=lim y(x)/x=lim((x^3/3-x^2+6)/x)= бесконечность Так как данный предел бесконечен, то график не имеет наклонных асимптот 8. все строй график ДУмаю это у меня у самогобыла акая проблема но вот писал
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
(z+v)/9-(z-v)/3=2
(2z-v)/6-(3z+2v)/3=−20
Первое уравнение умножить на 9, второе на 6, чтобы избавиться от дроби:
(z+v)-3(z-v)=18
(2z-v)-2(3z+2v)=−120
Раскроем скобки:
z+v-3z+3v=18
2z-v-6z-4v= -120
Приведём подобные члены:
4v-2z=18
-4z-5v= -120
Разделим первое уравнение на 2, второе на 5 для удобства вычислений:
2v-z=9
-0,8z-v= -24
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-z=9-2v
z=2v-9
-0,8(2v-9)-v= -24
-1,6v+7,2-v= -24
-2,6v= -24-7,2
-2,6v= -31,2
v= -31,2/-2,6
v=12
z=2v-9
z=2*12-9
z=24-9
z=15
Решение системы уравнений v=12
z=15