Объяснение:
1) (х²-8х-9)/(х-8)=0;
Домножим обе части уравнения на (х-8).
О.Д.З.: х-8≠0, х≠8.
х²-8х-9=0;
D₁=к²-ас;
D₁=4²+1*9=16+9=25=5²;
х₁₂=(-к±√D₁)/а;
х₁₂=(4±5)/1;
х₁=9; х₂= -1.
Если х=9, то х-8≠0.
Если х= -1, то х-8≠0.
ответ: -1; 9.
2) (х²-49)/(х+7)=0;
О.Д.З.: х+7≠0; х≠ -7.
Домножим обе части уравнения на (х+7).
х²-49=0;
(х+3)(х-3)=0,
х= -3; х=3.
Если х= -3, то х+7≠0.
Если х= 3, то х+7≠0.
ответ: -3; 3.
3) х²/(х-1)=(2х-1)/(х-1);
О.Д.З.: х-1≠0; х≠1.
Домножим обе части уравнения на (х-1).
х²=2х-1;
х²-2х+1=0;
(х-1)²=0;
х=1.
Если х= 1, то х-1=0.
ответ: нет решений.
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.