Пусть х км/ч - скорость автобуса, тогда (80 - х) км/ч - скорость сближения при движении вдогонку; 20 мин = 20/60 ч = 1/3 ч; 1/3х км - проедет автобус за 20 мин (расстояние между автобусом и автомобилем). Уравнение:
1/3х : (80 - х) = 1
1/3х = 1 · (80 - х)
1/3х = 80 - х
1/3х + х = 80
4/3х = 80
х = 80 : 4/3
х = 80 · 3/4
х = 20 · 3
х = 60
ответ: 60 км/ч.
Проверка:
1) 60 · 1/3 = 60/3 = 20 км - проедет автобус за 20 минут;
2) 80 - 60 = 20 км/ч - скорость сближения при движении вдогонку;
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру: Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка. Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что: Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Пусть х км/ч - скорость автобуса, тогда (80 - х) км/ч - скорость сближения при движении вдогонку; 20 мин = 20/60 ч = 1/3 ч; 1/3х км - проедет автобус за 20 мин (расстояние между автобусом и автомобилем). Уравнение:
1/3х : (80 - х) = 1
1/3х = 1 · (80 - х)
1/3х = 80 - х
1/3х + х = 80
4/3х = 80
х = 80 : 4/3
х = 80 · 3/4
х = 20 · 3
х = 60
ответ: 60 км/ч.
Проверка:
1) 60 · 1/3 = 60/3 = 20 км - проедет автобус за 20 минут;
2) 80 - 60 = 20 км/ч - скорость сближения при движении вдогонку;
3) 20 : 20 = 1 ч - время движения до встречи.