0
Объяснение:
Находим точку, симметричную точке (2;-3) относительно оси ординат. Для этого надо поменять знак у абсциссы. Получаем точку (-2;-3)
Находим общее уравнение прямой, параллельной y = 1,5x -2,5.
у = 1,5х -2,5 => k=1,5 => y = 1,5x +b
Находим b. Для этого в уравнение y = 1,5x +b подставляем координаты точки принадлежащей данной прямой, т.е. точки (-2;-3)
1,5*(-2)+b = -3
-3+b = -3
b = -3+3
b = 0
Итак, y =1,5x - уравнение параллельной прямой у=1,5х-2,5 и проходящей через точку, симметричную точке (2;-3) относительно оси ординат.
Теперь находим абсциссу точки пересечения найденной прямой с осью абсцисс.
у = 0 - уравнение оси абсцисс
1,5 х = 0
х = 0:1,5
х = 0
(0;0) - точка пересечения прямой у=1,5х с осью Ох
х = 0 - искомая абсцисса
ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Объяснение:
ответ 0 ответ 0 ответ 0 ааааа