По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
уравнение с параметром просто как и в обыкновенном кв. уравнинии вот найди дискриминант и корни уравн
дискриминант=4a^2-4(a-2)(2-3a)=4a^2-4(2a-3a^2-4+6a)=4a^2-8a+12a^2+16-24a=16a^2-32a+16=(4a-4)^2
-2a+корень из (4a-4)^2 -2a+4a-4 2a-4
x1====1
2(a-2) 2a-4 2a-4
первый корень x1=1
-2a-корень из (4a-4)^2 -2a-4a+4 -6a+4 2(-3a+2) 2-3a
x2=== =
=
2(a-2) 2(a-2) 2(a-2)
Все числа можно обозначить R, тогда:
x=R, за исключением x=4, x=-4