Разложите на множители выражение
(х+у)^2 - ( x^4- 2*x^2*y^2+ y^4 )=
=(х+у)^2 - ( x^2- y^2 )^2=
=(х+у)^2 - ( (x- y) (x+y) )^2=
=(х+у)^2 - (x- y)^2 (x+y)^2=
=(х+у)^2 (1 - (x- y)^2) =
=(х+у)^2 (1 - (x- y)) (1 +(x-y)) =
=(х+у)^2 (1 - x+ y) (1 +x-y)
Сократите дроби:
10а^2-6a+5ab-3b / 5a^2-8a+3=
=2a(5а-3)+b(5a-3) / 5a^2-5a-3a+3=
=(2a+b)(5a-3) / 5a(a-1)-3(a-1)=
=(2a+b)(5a-3) / (a-1)(5a-3)=
=(2a+b) / (a-1)
x^2-4x+1 / x^2-2(2+√3)x+(4+4√3+3)=
=x^2-4x+4-3 / x^2-2(2+√3)x+(2^2+4√3+√3^2)=
=(x-2)^2 - √3^2 / x^2-2(2+√3)x+(2+√3)^2=
=(x-2-√3) (x-2+√3) / ( x - (2+√3) )^2=
=(x-2-√3) (x-2+√3) / ( x- 2-√3)^2 =
=(x-2-√3) (x-2+√3) / ( x-2-√3) (x-2-√3)=
=(x-2+√3) / ( x-2-√3) или =(x+√3-2) / ( x-√3-2)
Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-