Представьте выражения в виде произведения: а)2x(x-y)+3y(x-y)= б)a(a+b)-5b(a+b)= разложите на множители: а)3a+3b+c(a+b)= б)2(m+n)+km+km= в)by+4(x+y)+bx= разложите многочлен на множители,группируя одночлены разными а)xy+xz+6y+6z= б)4a+4b+bx+ax=
Справедлива теорема: Пусть функция y=f(x), непрерывная на интервале (a; b), имеет на этом интервале только одну точку экстремума – точку x1. Тогда если x1 - точка максимума, то f(x1)- наибольшее значение функции f(x) на интервале (a; b); если же x1 - точка минимума, то f(x1) - наименьшее значение функции f(x) на интервале (a; b).
- интервал (0; 3) принадлежит этому множеству, и функция там непрерывна. x=1 - единственная критическая точка на (0; 3). + - - о----------|-----------o------> 0 1 3 Поскольку в окрестности х=1 производная меняет знак с "+" на "-", сама функция изменяет поведение с возрастания на убывание, т.е. х=1 - точка максимума. Следовательно, в силу указанной выше теоремы функция принимает наибольшее значение на интервале (0; 3) именно при х=1. Это значение равно у(1)= ln 1 - 1 = 0 - 1 = - 1. ответ: 1.
Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
б) (a+b)(a-5b)
a) 3(a+b)+c(a+b)=(a+b)(3+c)
б) 2(m+n)+k(m+n)=(m+n)(2+k)
a) x(y+z)+6(y+z)=(y+z)(x+6)
б) 4(a+b)+x(b+a)=(a+b)(4+x)