Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
За х часов может подготовить газон первая бригада, работая самостоятельно. За (х-10) часов может подготовить газон первая бригада, работая самостоятельно. Пусть 1 - это весь объём работы, тогда 1/х - делает за 1 час первая бригада. 1/(х-10) - делает за 1 час вторая бригада. 12/х - сделала за 12 час первая бригада. 9/(х-10) - сделала за 9 час вторая бригада. 60% от 1 = 0,6 = 3/5 - сделали обе бригады. Уравнение
При х≠10 и х > 10 имеем 12·5·(х-10) + 9·5х=3х(х-10) 60х-600+45х=3х²-30х 3х²-135х+600=0 Разделим обе части уравнения на 3 и получим: х² - 45х + 200 = 0 D = b² - 4ac D = 45²-4·1·200= 2025 - 800= 1225 √D = √1225 = 35 х₁ = (45 + 35)/2 = 80/2 = 40 х₂ = (45-35)/21 = 10/2 = 5 не удовлетворяет условию, т.к. должно быть х>10. Итак, за 40 часов может подготовить газон первая бригада, работая самостоятельно. За 40-10 = 30 часов может подготовить газон первая бригада, работая самостоятельно. ответ: 40 час; 30час
Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).