М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nail4iklatyopo
nail4iklatyopo
06.10.2021 09:44 •  Алгебра

Решите подробное объяснение ​


Решите подробное объяснение ​

👇
Ответ:
nagornayka69
nagornayka69
06.10.2021

3x-4y=-1 - не является , x+4y=5 - не является

Объяснение:

3×1-4×(-1)= 7

1+4×(-1)=-3

4,4(44 оценок)
Открыть все ответы
Ответ:
Nika152Vika
Nika152Vika
06.10.2021
Упростить значение выражения [(m-n+1)^2 - (m-1+n)^2]/4m * (n+1) и найти его значение при m = 25/13, n = корень(2)

Вариант 1(если (n+1) находится в знаменателе)
[(m-n+1)^2 - (m-1+n)^2]/(4m * (n+1))  =[(m-n+1- m+1-n)(m-n+1+ m -1+n)]/(4m*(n+1)) = =[(2- 2n)*2m]/(4m * (n+1)) =  [(1- n)*4]/(4 * (n+1)) = (1- n)/(n+1)
при n=корень(2)
 (1- n)/(n+1) =(1-корень(2))/(1+корень(2)) = (1-корень(2))^2/[(1+корень(2))(1-корень(2))]=
=  (1-2корень(2)+2)/(1-2) = 2корень(2) -3   

 Вариант 2( если (n+1) не входит в знаменатель дроби)
[(m-n+1)^2 - (m-1+n)^2]/4m * (n+1)  =[(m-n+1- m+1-n)(m-n+1+ m -1+n)]/4m * (n+1) = =[(2- 2n)*2m]/4m * (n+1) =  [(1- n)*4]/4 * (n+1) = (1- n)(n+1) =1- n^2
при n = корень(2)
 1- n^2 = 1-(корень(2))^2 = 1- 2 = -1 
4,6(74 оценок)
Ответ:
vadkirkov
vadkirkov
06.10.2021
Функции - это такое соотношение между двумя переменными. при котором одному значению одной из переменных соответствует только одно значение другой переменной. К примеру, экспонента y=e^x (е в степени х). Число е - известная постоянная, а у и х - две переменных. При этом одному какому-либо значению х (такую переменную называем аргументом) соответствует только одно значение у (такую переменную, собственно, и именуют функцией).

Из функций с простых арифметических действий можно создавать новые функции. К примеру, (e^x - 1/e^x)/2 = y. Такую функцию называют элементарной. Перед вами - пример гиперболической функции. Ее называют гиперболическим синусом. Имеется и специальное обозначение: sh x (на нашем разговорном - шинус).
Поменяем знак в скобке - получим гиперболический косинус: (e^x + 1/e^x)/2 = у.
Специальное обозначение ch x (на разговорном - чосинус).
Имеется также гиперболический тангенс и котангенс.
Основное соотношение между этими функциями выражается так:
разность квадратов гиперболических косинуса и синуса равна единице (по аналогии с равной единице сумме квадратов косинуса и синуса).
Это соотношение дает параметрическое представление такой кривой, как гипербола - отсюда и название: гиперболические функции.
4,7(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ